Example of distributive law, Mathematics

Assignment Help:

Maya gives the children examples of distributive with small numbers initially, and leads them towards discovering the law. The usual way she does this is to give the children problems like 'An army officer has 7 rows of buttons on his uniform, with four in each row. 4 rows are above the belt, and 3 below. What are the total number of buttons?'. They usually count all the rows, and write that the total is

7 times 4 = 7(4) = 7 x 4 = 28.

Then she gets them to do it in the following way: 3 ROWS

How many rows above the belt? ...... 4 rows. 4 ROWS

So, how many buttons in all above the belt? ...... 4 times 4, i.e., 16.

How many below the belt? ,.. 3 times 4, i.e., 12.

How many in'all? ..... . 16 + 12, i.e., 28.

Both the answers are the same. Why is this so? ,  (4x4)+(3~4)=(4+3)x4

She does a rough drawing of 7 rows of 4 buttons each , and points out to them how the 7 rows can be broken up into 4 rows and 3 rows. She also points out that this covers all the buttons. So

7 rows = 4 rows + 3 rows

After some of these types of examples, she gives them problems to do on their own too.

Once they have had some practice in applying the distributive law, she introduces them to the use of distributive for multiplying a 2-digit number by a I-digit number.

For this, she begins with giving them story problems like 'A boy sells plastic flowers packed in sets of 5. He keeps 10 packets on his right and 4 on his left. How many flowers does he have in all?'. She leads them towards applying the distributive law by asking questions like "How .many packets in all?", "How many on his right?", etc. Asking relevant questions, she lets the children discover that

What she stresses in this process is the first step, i.e., the distributive. With more examples of this kind, she finds that the children slowly begin to recognise that when a 2d1git number is to be multiplied by a single digit number, it is broken up into tens and ones, each is multiplied separately, and these products are added to get the required answer.

She also gives the children the following kind of exercises to do to practise distributive.

Of course, this is not a one-time activity. She returns to distributive again and again, over a period of time, while they are learning the standard algorithm.


Related Discussions:- Example of distributive law

Find out the total number people and the total number car, A national park ...

A national park remains track of how many people per car enter the park. Today, 57 cars had 4 people, 61 cars had 2 people, 9 cars had 1 person, and 5 cars had 5 people. What is th

Positive exponents, Simplify following and write the answers with only posi...

Simplify following and write the answers with only positive exponents.   (-10 z 2 y -4 ) 2 ( z 3 y ) -5 Solution    (-10 z 2 y -4 ) 2 ( z 3 y ) -5

Determine the measure of angle, Two sides of a picture frame are glued toge...

Two sides of a picture frame are glued together to form a corner. Each side is cut at a 45-degree angle. Using the illustration provided, ?nd the measure of ∠A. a. 45° b

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Determine the displacement, Example: A 16 lb object stretches a spring 8/9...

Example: A 16 lb object stretches a spring 8/9 ft by itself. Here is no damping as well as no external forces acting on the system. The spring is firstly displaced 6 inches upward

Hyperboloid of one sheet - three dimensional spaces, Hyperboloid of One She...

Hyperboloid of One Sheet The equation which is given here is the equation of a hyperboloid of one sheet. x 2 /a 2 + y 2 /b 2 - z 2 /c 2 = 1 Here is a diagram of a com

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Magnitude - vector, Magnitude - Vector The magnitude, or length, of th...

Magnitude - Vector The magnitude, or length, of the vector v → = (a1, a2, a3) is given by, ||v → || = √(a 1 2 + a 2 2 + a 2 3 ) Example of Magnitude Illus

Lcm, what is the LCM of 4, 6, 18

what is the LCM of 4, 6, 18

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd