Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Calculate the value of the following limits, Calculate the value of the fol...

Calculate the value of the following limits. Solution To remind us what this function such as following the graph. hence, we can see that if we reside to the r

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

50+50, what is the totel

what is the totel

SOLUTIONS.., bunty and bubly go for jogging every morning. bunty goes aroun...

bunty and bubly go for jogging every morning. bunty goes around a square park of side 80m and bubly goes around a rectangular park with length 90m and breadth 60m.if they both take

Even and odd functions, Even and Odd Functions : This is the final topic ...

Even and Odd Functions : This is the final topic that we have to discuss in this chapter.  Firstly, an even function is any function which satisfies,

Demerits and merits -the arithmetic mean or a.m, Demerits and merits of the...

Demerits and merits of the measures of central tendency The arithmetic mean or a.m Merits i.  It employs all the observations given ii. This is a very useful

KENDE QE MBESHTETEN NE TE NJEJTIN HARK, korda ab e ndan rrethin me qender o...

korda ab e ndan rrethin me qender o ne dy harqe njeri prej tyre eshte sa trefishi i tjetrit gjeni masat e harqeve dhe masat e trekendeshit aob

Decmals, just want to go over it

just want to go over it

The stoichiometric reaction, Prove that a reaction following the rate law v...

Prove that a reaction following the rate law v = k[A] 2 is characterized by a linear plot of [P] t 1 versus t-l, where P is the product of the stoichiometric reaction A = P. Sho

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd