Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Solving a quadratic equation, In polynomials you have seen expressi...

In polynomials you have seen expressions of the form x 2 + 3x - 4. Also we know that when an expression is equated to zero or some other expression, we cal

Compound angles, determine the exact value of cos (11*3.145/6)

determine the exact value of cos (11*3.145/6)

Calculus, I need help fast with my calculus work

I need help fast with my calculus work

Customary units of length, Eileen needs 9 feet of fabric to make a skirt. I...

Eileen needs 9 feet of fabric to make a skirt. If Eileen has 18 feet of fabric how many skirts can she make?

Mathematical methods of economic analysis, I need answers for these 10 exam...

I need answers for these 10 exam questions: 1.Input-output (Leontief) model: main assumptions and construction. Definition of productivity. Necessary condition of productivity of i

Give introduction to pythagorean theorem, Give Introduction to Pythagorean ...

Give Introduction to Pythagorean Theorem ? The Pythagorean Theorem says that for any right triangle: a 2 + b 2 = c 2 , where c is the hypotenuse, and a and b are the legs. T

Linear differential equations, A linear differential equation is of differe...

A linear differential equation is of differential equation which can be written in the subsequent form. a n (t) y (n) (t) + a n-1 (t) y (n-1) (t)+..............+ a 1 (t) y'(

Mealy and Moore Machine, Distinguish between Mealy and Moore Machine? Const...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.on..

Proof of the derivative of a constant, Proof of the Derivative of a Constan...

Proof of the Derivative of a Constant : d(c)/dx = 0 It is very easy to prove by using the definition of the derivative therefore define, f(x) = c and the utilize the definiti

Write radicals in exponent form, Write each of the given radicals in expone...

Write each of the given radicals in exponent form. Solution As illustrated in the last two parts of this example we have to be careful with parenthesis.  While we

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd