Energies of the diametric molecules of a gas, chemistry, Microeconomics

Assignment Help:

Energies of the diametric molecules of a gas, chemistry assignments

The analysis basis for treating these different types of motion can be seen by describing the motion of a diametric molecule of a gas. Here we describe the potential and kinetic energy components of a freely moving gas phase molecule treated as if it were a ball and spring system.

The only potential energy contribution arises from variations in the distance between the atoms of the molecule. If the variable intermolecular distance is represented by, then the energy U can be shown to be a function of r by writing U(r).

The kinetic energy depends on the motion of the two atoms of the molecule dx1/dt, dy1/dt and dz1/dt, respectively, of one of the atoms. The symbols x2y2 and z2 represent the velocity components of the second atom.

The total mechanical energy ε of the diatomic molecule is given by;

Separate translational, rotational and vibrational components of this energy can be recognized if a different coordinate system is introduced.

The center of mass of the molecules can be located by coordinates represented by X, Y and Z. the center of the mass, as is illustrated in two dimensions in fig. is related to the atomic pressure by the expressions:

ε = ½ m1 (x21 + y21 + z21) + ½ m2(x22 + y22 +z22) + U (r)

(m1 + m2)X = m1x1 + m2x2

(m1 +m2)Y = m1y1 + m2y2

(m1 + m2)Z = m1z1 +m2z
2

The orientation of the molecule is expressed by the polar angular coordinate's θ and Ø. These angular coordinates and the internuclear distance r lead to the relations:

x2 - x1 = r sinθ cos∅, y2 - y1 = sinθ cosØ, z2 - z1 = r cosθ

These relations can be used to eliminate the coordinates for one or the other of the two atoms. We can, for example, use the first to write x2 = x1 +r sinθ cos Ø. Substitution in the first step of eq.  eliminates the x2term. This procedure leads to:

x1 = X - m2/m1 + m2 r sinθ cos Ø 

y1 = Y- m2/m1 + m2 r sinθ cos Ø 

z1 = Z - m2/m1 + mr cos θ 

and, x2 = X - m2/m1 + m2 r sinθ cos Ø 

y2 = Y - m2/m1 + m2 r sinθ cos Ø 

z2 = Z - m2/m1 + m2 r cos θ 


the derivates of expressions with respect to time can be taken if we recognize that X, y, X, r, θ and Ø are all time dependent. The results for x1, y1, z1 and x2, y2z2 can be substituted to give, after rearrangement:

ε = ½ (m1 + m2) (X2 + Y2 +Z2) + ½ m1m2/m1 +m2 [r2 + r2 θ2 + r2 (sin2θ) Ø2] +U (r) 


Related Discussions:- Energies of the diametric molecules of a gas, chemistry

Free trade, is country beter off with ban on imports?

is country beter off with ban on imports?

Demand curves, draw demand curve for a-phone explain how the graph, price ,...

draw demand curve for a-phone explain how the graph, price ,and quantity demand will change if there is an overall increase in income.

How to calculate the cpi index, When measuring price levels in the economy ...

When measuring price levels in the economy (such as when calculating the CPI index), why is a weighted average used? Because we require giving greater emphasis to prices at whi

Lori teaches singing. her fixed costs are $1, Price | Quantity demanded ___...

Price | Quantity demanded _________________________ 0 250 50 200 100 150 150 100 200 50 250 0 A) Calculate Lorie''s profit-maximizing output, price, and economic profit. B) Do yo

Answer related to the article , In the following article , I want you to co...

In the following article , I want you to comment on the type of market structure and whether Kinked Demand apply and what will possibly be the market share for GM and VW? ""In case

Setting up a model to forecast future demand, Because of your reputation as...

Because of your reputation as an expert in economic analysis, you have been hired as vice president of a business consulting firm named Economists R Us.  This firm provides consult

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd