Doubly linked lists-implementation, Data Structure & Algorithms

Assignment Help:

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one direction. Sometimes, we ought to traverse the list in both of the directions to improve performance of algorithms. To enable this, we require links in both the directions, i.e., the element has to have pointers to the right element in addition toto its left element. This type of list is called  asdoubly linked list.

141_DOUBLY LINKED LISTS-IMPLEMENTATION.png

Figure: A Doubly Linked List

Doubly linked list is described as a collection of elements, each of element consisting of three fields:

Ø  pointer to left element,

Ø  data field, &

Ø  pointer to right element.

Left link of the leftmost element is set to NULL that means that there is no left element to that. And, right link of the rightmost element is set to NULL that means that there is no right element to that.

ALGORITHM  (Creation)

Step 1                begin

Step 2                define a structure ELEMENT with  fields

Data

Left pointer

Right pointer

Step 3                declare any pointer by name head and using (malloc()) memory allocation  function  allocate  space  for  one  element  &  store  the address in head pointer

Head = (ELEMENT *) malloc(sizeof(ELEMENT))

Step 4                read the value for head->data head->left = NULL

head->right = (ELEMENT *) malloc(size of (ELEMENT))

Step 5                repeat step3 to create needed number of elements

Step 6                end

 

Program demonstrated the creation of a Doubly linked list.

/* CREATION OF A DOUBLY LINKED LIST */

/* DBLINK.C */

# include

# include

structdl_list

{

int data;

structdl_list *right;

structdl_list *left;

};

typedefstructdl_listdlist;

voiddl_create (dlist *);

void traverse (dlist *);

/* Function creates simple doubly linked list */

voiddl_create(dlist *start)

{

printf("\n Insert values of element -1111 to come out : ");

scanf("%d", &start->data);

if(start->data != -1111)

{

start->right = (dlist *) malloc(sizeof(dlist));

start->right->left = start;

start->right->right = NULL;

dl_create(start->right);

}

else

start->right = NULL;

}

/* Display the list */

void traverse (dlist *start)

{

printf("\n traversethe list usingright pointer\n");

do {

printf(" %d = ", start->data);

start = start->right;

}

while (start->right); /* Demonstrates value of last start only one time */

printf("\n traversethe listusing left pointer\n");

start=start->left;

do

{

printf(" %d =", start->data);

start = start->left;

}

while(start->right);

}

{

dlist *head;

head = (dlist *) malloc(sizeof(dlist));

head->left=NULL; head->right=NULL; dl_create(head);

printf("\n created doubly linked list is as ");

traverse(head);

}


Related Discussions:- Doubly linked lists-implementation

Stack, Explain in detail the algorithmic implementation of multiple stacks....

Explain in detail the algorithmic implementation of multiple stacks.

Algorithms, 2. Write a note on i) devising ii) validating and...

2. Write a note on i) devising ii) validating and iii) testing of algorithms.

Insertion in list, In the array implementation of lists, elements are store...

In the array implementation of lists, elements are stored into continuous locations. In order to add an element into the list at the end, we can insert it without any problem. But,

Splay trees, Addition of new records in a Binary tree structure always occu...

Addition of new records in a Binary tree structure always occurs as leaf nodes, which are further away from the root node making their access slower. If this new record is to be ac

B-tree, Unlike a binary-tree, each node of a B-tree may have a number of ke...

Unlike a binary-tree, each node of a B-tree may have a number of keys and children. The keys are stored or saved in non-decreasing order. Each key has an related child that is the

Importance of object-oriented over java, Importance of Object-Oriented over...

Importance of Object-Oriented over java Java is basically based on OOP notions of classes and objects. Java uses a formal OOP type system that should be obeyed at compile-t

Avl tree rotations, AVL trees and the nodes it contains must meet strict ba...

AVL trees and the nodes it contains must meet strict balance requirements to maintain O(log n) search time. These balance restrictions are kept maintained via various rotation func

Convertion, how we can convert a graph into tree

how we can convert a graph into tree

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd