Digital frequency meter, Electrical Engineering

Assignment Help:

Q. Explain digital frequency meter.

or

Explain principle of digital frequency meter and discuss utility of time base selector with suitable diagrams.

Sol. Digital Frequency Meter: The signal whose frequency is to be measured is converted into a train of pulses, one pulse one pulse for each cycle of the signal. Then the number of pulses appearing in a definite interval of time is counted by means of an electronic counter, since the pulses represent the cycles of unknown signal, the number appearing on the counter is a direct indication of frequency of the unknown signal. Since the electronic counters are extremely fast, the frequency of high frequency of signals may be known.

    Basic circuit: The block diagram of the basic circuit of a digital frequency meter is shown. The unknown frequency signal is fed to a Schmitt trigger.

    The signal may be amplified before being applied to Schmitt trigger. In a Schmitt trigger, the signal is converted into a square wave with very fast rise and fall times, then differentiated and clipped. As a result, the output from a Schmitt trigger is a train of pulses, one pulse for each cycle of the signal.

     The output pulses from the Schmitt trigger are fed to start stop gate. When this gate opens (start), the input pulses pass through this gate and are fed to an electronic counter which starts registering the input pulse. When the gate is closed (stop), the input of pulses to counter ceases and it stops counting.

The counter displays the number of pulses that have passed through it in the time interval between start and strop. If this interval is known, the pulse rate and hence the frequency of the input signal can be known. Suppose f is the frequency of unknown signal, N the number of counts displayed by counter and t is the time interval between start and stop of gate. Therefore frequency of unknown signal f = N/t.

Time base : In order to know the value of frequency of input signal, the time interval known as time base can be determined by the circuit given in. The time-base consists of a fixed frequency crystal oscillator. This oscillator, which is known as clock oscillator must be very accurate. In order to insure its accuracy, the crystal is enclosed in a constant temperature oven. Then output of this constant frequency oscillator is fed to a Schmitt trigger which converts the input to an output consisting of a train of pulses then passes through a series of frequency divider decade assemblies connected in cascade. Each decade divider consists of a decade counter divides the frequency by 10. Connections are taken from the output of each decade in the series chain and, by means of a selector switch any output may be selected.

  In the block diagram of the clock oscillator frequency is 1MHz or 10 Hz. Thus the output of Schmitt trigger is pulses per second. At the tap of the switch there are pulses per second and thus the time interval between two consecutive pulses is second or 1 µs.

At tap, the pulses having gone though decade divider 1, are reduced by a factor 10 and now there are 106 pulses per second. Therefore the time interval between them is 10µs. Similarly, there are 104 pulses per second at tap 10-2  and the time interval is 100µs ; 10-3 pulses at tap 10-3 and the time interval is 1 ms; 100 pulses per second at tap  10-4 and the time interval 10 ms, 10 pulses per second at tap10-5  and time interval 100 ms; one pulse per second at tap 10-6 and the time interval is 1 second.

 This time interval between the pulses is the time base and it can be selected by means of the selector switch.


Related Discussions:- Digital frequency meter

Circuit with inductive load, Circuit with inductive load  Electromagnet...

Circuit with inductive load  Electromagnetic induction When a conductor is moved across a magnetic field so as to cut by the lines of force (or flux, an electromotive force

What is the desirable properties of an insulation material, What is the des...

What is the desirable properties of an insulation material? Insulation materials have the desirable properties are as follows: 1. Very fine dielectric strength such as of mi

Registers - introduction to microprocessors , Registers A resister is ...

Registers A resister is  a group  of flip  flops  or binary  cells which holds  the binary information. Since  a binary cell  stores  one  bit of  information  an n bit  regis

Cmp compare instruction , CMP Compare Instruction This instruction is ...

CMP Compare Instruction This instruction is used to compare the contents  of register  or memory  with accumulator the contents of the operand remain  unaffected. There are tw

Conditions in which rc circuit behaves as differentiator, Q. Explain the co...

Q. Explain the conditions under which an RC circuit behaves as Differentiator Differentiator is a circuit in which the output voltage is directly proportional to the derivative

Transformer of distribution, Transformer of distribution: Let be the t...

Transformer of distribution: Let be the transformer of distribution of the Face(Figure) 3 connected to the primary between phase a and c of a three-phase network of 23 kV. Bot

Show the properties of a good heat sink, Properties of a good heat sink ...

Properties of a good heat sink For maximum efficiency, a heat sink should be 1)Be in good thermal contact with the transistor case 2)Have the largest surface area 3)Be

What is the photon flux - focal spot isotropically, Suppose that the x rays...

Suppose that the x rays are emitted from a focal spot isotropically. The photon flux is 3.28 x 10 6 photons mm -2 sec -1 at a distance of 0.75 m from the focal spot. What is the

Semiconductor, What is the similarities between a vacuum diode and a triode...

What is the similarities between a vacuum diode and a triode?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd