Develop a matlab program to design algorithm, MATLAB Programming

Assignment Help:

Write a pseudo-code showing the list of steps to take for solving the given problem. In this process, you should identify the functions that are to be used in the program. Develop a Matlab program based on the designed algorithm. Correct the program for any syntax errors.

Test the program for any logic errors.

1.1 Derivative of a Function

The derivative of a continuous function f (x) is defined by the equation

2284_limit equation.png

In a sampled function, becomes

f'(x(¡)) =  [f(x(i)   + 1) - f(x(i)]  /  ?x

where ?x =( x(i)  + 1) - x(i)

Assume that a vector vector vect contains n samples of a function taken at a spacing of dx per sample. Write a function that will calculate the derivative of this vector from above discrete equation. The function should check to make sure that dx is greater than zero to prevent divide-by-zero errors in the function.

To check your function, you should generate a data set whose derivative is known and compare the result of the function with the known correct answer. A  good  choice for a test function is sinx, whose derivative is cosx. Generate an input vector containing 100 values of the function sinx starting at x = 0 and using a step size ?x of 0.05. Take the derivative of the vector with your function, and then compare the resulting answers to the known correct answer. Calculate how close your function came to the correct value by computing error as sum of squared distance of all the 100 points.

1.2 Derivative in the Presence of Noise

Explore the effects of input noise on quality of the numerical derivative. First, generate an input vector containing 100 values of the function sinx starting at x = 0 and using a step size ?x of 0.05, just as you did in the above problem. Next, use function 'rand' to generate a small amount of random noise with a maximum amplitude of  ±0.02, and add that random noise to the samples in your input vector. Note that the peak amplitude of the noise is only 2% of the peak amplitude of your signal, since the maximum value of sinx is 1. Now take the derivative of the function using the derivative function that you developed in the above problem. Calculate how close your function came to the correct value by computing error as sum of squared distance of all the 100 points.

YOU MUST USE THIS PROGRAM SKELETON FOR THIS LAB BUILD UPON THIS SKELETON

%SKELETON Program for Program3

%data.m returns the 100 sample values

x=data();

%Generate 3 function values (y1,y2,y3)

% and their derivatives (yd1,yd2,yd3)

[y1 yd1]=fn1(x);

[y2 yd2]=fn2(x);

[y3 yd3]=fn3(x);

%Add noise to the y-values

[y1_ns]=add_noise(y1,0.02);

[y2_ns]=add_noise(y2,0.02);

[y3_ns]=add_noise(y3,0.02);

%Compute derivative for each of the three functions with/without noise

my_yd1=my_derivative(x,y1);

my_yd1_ns=my_derivative(x,y1_ns);

my_yd2=my_derivative(x,y2);

my_yd2_ns=my_derivative(x,y2_ns);

my_yd3=my_derivative(x,y3);

my_yd3_ns=my_derivative(x,y3_ns);

%Compute Sum Square error of the derivative for each of the three functions

error1=sumsqerror(yd1,my_yd1);

error1_ns=sumsqerror(yd1,my_yd1_ns);

error2=sumsqerror(yd2,my_yd2);

error2_ns=sumsqerror(yd2,my_yd2_ns);

error3=sumsqerror(yd3,my_yd3);

error3_ns=sumsqerror(yd3,my_yd3_ns);

error1

error1_ns

error2

error2_ns

error3

error3_ns

 1.3

What to Hand In

Run your program for THREE functions, where you know the derivatives. You need to generate data for these functions; one of this function is sinx, as described above. Print the error for each function, with and without noise, and make a script file for grading.

1.4 Write a new functions: factorial_loop(n) as described below, and run your own tests. Note: you must use the type of loop specified.

1.  factorial_loop will use 'for' loop to compute factorial of n

Use the diary command to save your work into a file: lab09.txt you need to submit for grading. In the command window, type:

 factorial_loop.m

factorial_loop(5)

factorial_loop(9)


Related Discussions:- Develop a matlab program to design algorithm

Reading from a file, Reading from a File: A file has been once created...

Reading from a File: A file has been once created; it can be read into a matrix variable. When the file is a data file, the load function will read from the file filename.ext

Systems modelling and simulation , The purpose of this assignment is to use...

The purpose of this assignment is to use Matlab/Simulink to analyse and simulate a mathematical model of an electromechanical system. This system comprises two component subsystems

Develop matlab monte carlo queuing simulator, Answers should be submitted i...

Answers should be submitted in an MS Word document. Simulations should accompany answers in a separate MATLAB file. 1)  Queuing Simulator: Consider a communications router that

Tuning Fractional PID using GA and PSO algorithm, my project is on load fre...

my project is on load frequency control using FPID tuned using GA and PSO algorithm.the system is a two area system.

Statistical analysis, please tell me the procedure of Anova two Way analysi...

please tell me the procedure of Anova two Way analysis in matlab?

Alex Takahashi, I need assistance in learning on how to do simulation of sy...

I need assistance in learning on how to do simulation of system described with an algebraic equations.

Population pyramid, I want to write a function in matlab which gives me a p...

I want to write a function in matlab which gives me a population pyramid bar chart. could you please help me do this.

ANFIS, How to design a FIR filter using ANFIS in MATLAB

How to design a FIR filter using ANFIS in MATLAB

Variable numbers of arguments, Variable numbers of arguments: In the f...

Variable numbers of arguments: In the functions there have been a fixed number of input and output arguments. For illustration, in the function below, there is one input argum

Matlab programming, Obtaining the Partial Fraction Expansion of the Z-Trans...

Obtaining the Partial Fraction Expansion of the Z-Transform expression and to find its Inverse Z-Transforms using MATLAB

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd