Determine the solution to the differential equation, Programming Languages

Assignment Help:

Determine the solution to the following differential equation.

x2 y′′ + 3xy′ + 4 y = 0

 Solution

Find the roots to (3) first as generally.

r(r -1) + 3r + 4 = 0

r2 + 2r + 4 = 0                          ⇒                     r1,2 = -1 + √(3i)

Then the general solution is,

y(x) = c1 x-1 cos (√3 ln x ) + c2 x-1 sin (√3 ln x ) = x-1 (c1 cos (√3 ln x ) + c2 sin (√3 ln x ))

We must now talk about how to deal along with x<0 as it is a possibility on occasion. To deal with it we require using the variable transformation,

h = - x

In this case as x<0 we will find h>0. Now, describe as,

u (h) = y(x) = y (-h)

So using the chain rule we can notice that,

u′ (h) = - y′(x)

 And u′′(h) = y′′(x)

 

 With this transformation the differential equation turns into,

a (-h)2 u′′ + b (-h)(-u′) + cu = 0

ah2u′′ + bhu′ +cu = 0

In other words, as h>0 we can use the work above to find solutions to this differential equation. We will also go back to x's with using the variable transformation in reverse.

h= - x

Now here we take the real, distinct case first to notice what happens.

m (h) = c1hr1 + c2 hr2

y(x) = c1 (-x) r1 + c2 (-x) r2

Here, we could do that for the rest of the cases if we needed to, although before doing that let's see that if we recall the definition of absolute value as,

667_Determine the solution to the differential equation.png

We can combine both of our solutions to such case in one and write the solution,

y(x) = c1 |x| r1 + c2 |x| r2

x ≠ 0;

Remember that we still require to avoid x=0 as we could even get division by zero. Though it is now a solution for any interval which doesn't have x=0.

We can do similarly for the other two cases and the subsequent solutions for any interval not having x=0.

y(x) = c1 |x|r + c2 |x|r In|x|

y(x) = c1 |x|l (cos m In|x|) + c2 |x|l (sin m In|x|)

We can create one more generalization before working one more illustration. A more common form of an Euler Equation is as,

a(x - x0)2 y'' + b (x - x0) y' + cy = 0;

And we can ask for solutions for any interval not having x = x0. The work for generating the solutions in that case is identical to all the above work and therefore isn't demonstrated now.

The solutions for this general case for any interval not containing x=a are,

y(x) = c1|x - a|r1 + c2 |x - a|r2

y(x) = |x - a|r (c1+ c2  In |x - a|)

y(x) = |x - a|l c1 cos (m In|x -a|) + c2 sin (m In|x - a|)

Here then the roots are for solution to:

ar(r - 1) + b(r) + c = 0


Related Discussions:- Determine the solution to the differential equation

Pseudocode for a program that reads a temperature, Write a pseudocode for a...

Write a pseudocode for a program that reads a temperature as a whole number from a user and outputs a “probable” season (winter, sprint, summer, or fall) depending on the temperatu

Return value in an array, A specification of a function TOARR is given belo...

A specification of a function TOARR is given below. function TOARR(n in Int, s in Stack of Int) return in Array of Int pre n ≥ 0. post The returned value is an array of size

Java event delegation model, Expertsmind brings you unique solution in jav...

Expertsmind brings you unique solution in java assignments Event Delegation Model The Delegation Model with java assignment help Version 1.1 of the Java TM foundation

Design an application that opens and analyses word files, Design an applica...

Design an application that opens and analyses word files. Requirements: Create an application that analyses text documents. It should open a text file, read each word in

Padovan string, Padovan String Problem Description A Padovan string...

Padovan String Problem Description A Padovan string P(n) for a natural number n is defined as: P(0) = 'X' P(1) = 'Y' P(2) = 'Z' P(n) = P(n-2) + P(n-3), n

Phonebook entry, The first task is to extend the  NeoPhoneBookEntry and  Ne...

The first task is to extend the  NeoPhoneBookEntry and  NeoPhoneBook classes to accommodate for  four additional contact  details:  Ringtone,  Vibration Pattern,  Led Pattern  and

Assembly programme , write and compile a simple program in Assembly Languag...

write and compile a simple program in Assembly Language that compute and print student grades for a course.which you can open a file, read from it, and compute the results...using

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd