Determine the probability , Mathematics

Assignment Help:

A medical survey was conducted in order to establish the proportion of the population which was infected along with cancer. The results indicated that 40 percent of the population was suffering from the disease.

A sample of 6 people was later taken and examined for the disease. Determine the probability that the given outcomes were observed

a) Merely one person had the disease

b) Exactly two people had the disease

c) Mostly two people had the disease

d) At least two people had the disease

e) Three or four(4) people had the disease

Solution

P(a persona having cancer) = 40%  = 0.4 = P

P(a person not having cancer) = 60%             = 0.6 = 1 - p = q

a)      P(only one person having cancer)     

= 6C1 (0.4)(0.6)5

=  6!/(5! 1!)(0.4)1(0.6)5                      

= 0.1866

Note that from the formula

nCrprqn-r:           where as: n = sample size = 6

                                    p = 0.4

                                    r = 1 = simply one person having cancer

b)      P(2 people had the disease)

= 6C2 (0.4)2 (0.6)4

6!/(6! 2!)=  (0.4)2 (0.6)5

(6 * 5 * 4!)/(4! * 2 *1)=   (0.4)2 (0.6)5

= 15 × (0.4)2 (0.6)5

= 0.311

c)      P(at most 2) = P(0) + P(1) + P(2) = P(0) or P(1) or P(2)

So we estimate the probability of each and add them up.

P(0) = P(nobody having cancer)

= 6C0 (0.4)0(0.6)6

6!/(0! 6!)=  (0.4)0(0.6)6

= (0.6)6

 = 0.0467

The probabilities of P(1) and P(2) have been worked out in part (a) and

Hence P(at most 2) = 0.0467 + 0.1866 + 0.311 = 0.5443

d)      P(at least 2)

            = P(2) + P(3) + P(4) + P(5) + P(6)

= 1 - [P(0) + P(1)] it is a shorter way of working out the solution as

[P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1]

= 1 - (0.0467 + 0.1866)

= 0.7667

e)      P(3 or 4 people had the disease)

= P(3) +P(4)

= 6C3(0.4)3(0.6)3  + 6C4(0.4)4(0.6)2

= ( 6!/(3! 3!)) (0.4)3(0.6)3 + (6!/(2! 4!)) (0.4)4(0.6)2

 = {(6 × 5 × 4 × 3!)/ (3 × 2 × 1 × 3!)}(0.4)3(0.6)3 + {(6 × 5 × 4!)/(2 × 1 × 4!)}  (0.4)4(0.6)2

 = 20(0.4)3(0.6)3  + 15(0.4)4(0.6)2 

= (20 × 0.013824) + (15 × 0.009216)

= 0.27648 + 0.13824

 = 0.41472


Related Discussions:- Determine the probability

Probability, If a school has lockers with 50 numbers on each co...

If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Properties of dot product - vector, Properties of Dot Product u → • (v...

Properties of Dot Product u → • (v → + w → ) = u → • v → + u → • w →          (cv → ) • w → = v → •(cw → ) = c (v → •w → ) v → • w → = w → • v →

Find the shortest paths in the digraph, 1. a) Find the shortest paths from ...

1. a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class).  Please show your work, and draw t

Algebra 1, the equation of a line that passes through (-3,4) and is perpend...

the equation of a line that passes through (-3,4) and is perpendicular to the line y= -3x + 1 Also Graph the inequality: -3x + y And Use -4.9t(4.9t) + 10t + 1.5 to create a fu

4.4238/[1.047+{1.111*[9.261/7.777]}*1.01, Ask question #Min 4.4238/[1.047+{...

Ask question #Min 4.4238/[1.047+{1.111*[9.261/7.777]}*1.01

Without a calculator give the exact value, without a calculator give the ex...

without a calculator give the exact value of each of the following logarithms. (a) (b) log1000 (c) log 16 16 (d) log 23 1  (e)  Solution (b) log10

The formal algorithm in maths, When do you think you should introduce word ...

When do you think you should introduce word problems-before children master the formal algorithm, or after? What are your reasons for your choice? In any case, no textbook can s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd