Determine a list of all possible rational zeroes, Algebra

Assignment Help:

Determine a list of all possible rational zeroes

Let's see how to come up along a list of possible rational zeroes for a polynomial.

Example   Find a list of all possible rational zeroes for following polynomials.

                                P ( x ) = x4 - 7 x3 + 17 x2 -17 x = 6

Solution

if x =(b/c) is to be a zero of P ( x ) then b have to be a factor of 6 and c have to be a factor of 1. Also, as we illustrated in the previous example we can't forget negative factors.

Thus, the first thing to do is really to list all possible factors of 1 & 6.  Following they are.

                            6 :    ±1, ± 2, ± 3, ± 6

                           1:      ±1

Now, to obtain a list of possible rational zeroes of the polynomial all we have to do is write down all possible fractions which we can compose from these numbers where the numerators have to be factors of 6 & the denominators have to be factors of 1. Actually this is easier than it might at first seem to be.

There is extremely simple shorthanded way of doing this. Let's go through the first one thoroughly then we'll do the rest earlier.  Firstly, take the first factor from the numerator list, by including the ± , and divide this through the first factor (only factor in this case) from the denominator list, again involving the ± .  It gives,

                                                                     ±1 /±1

It looks like a mess, however it isn't too bad. Here are four fractions. They are,

+1 / +1 =1           +1 / -1 = -1                -1/ + 1 = -1                        -1 /- 1= -1

However Notice that the four fractions all reduce down to two possible numbers. It will always happen with these kinds of fractions. What we'll do from now is make the fraction, do any simplification of the numbers, avoiding the ± , and then drop one of the ± .

Thus, the list possible rational zeroes for this polynomial is,

±1 /  ±1 = ±1                  ±2 /  ±2 = ±1            ±3 / ± 3 = ±1                   ±6 /  ±6 = ±1

Thus, it looks there are only eight possible rational zeroes & in this case they are all integers.  Notice as well that any rational zeroes of this polynomial will be somewhere in this list, even though we haven't found them still.


Related Discussions:- Determine a list of all possible rational zeroes

Algebraic reasoning, if im working out a problem that say 16 - t over 10 = ...

if im working out a problem that say 16 - t over 10 = -8 what be the answer

Use synthetic division to divide equation, Use synthetic division to divide...

Use synthetic division to divide 5x 3 - x 2 + 6 by x - 4 . Solution Okay along with synthetic division we pretty much avoid all the x's and just work with the numbers in

Solve a quadratic equation through completing the square, Solve a quadratic...

Solve a quadratic equation through completing the square Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen

Process for graphing a polynomial, 1. Find out all the zeroes of the polyno...

1. Find out all the zeroes of the polynomial and their multiplicity.  Utilizes the fact above to find out the x-intercept which corresponds to each zero will cross the x-axis or on

Question, mary and susan had a total of 310 stamps. after mary bought anoth...

mary and susan had a total of 310 stamps. after mary bought another 56 stamps and susan gave away half of her stamps, they both had the same number of stamps. How many stamps did m

Applications of logarithmic equation, In this last section of this chapter ...

In this last section of this chapter we have to look at some applications of exponential & logarithm functions. Compound Interest This first application is compounding inte

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd