Derive the expression of torque in closely excited system., Mechanical Engineering

Assignment Help:

Q. Derive the expression of torque developed in closely excited magnetic system. Clearly explain then assumption made.

 

Sol. Double - Excited System

 A doubly - excited magnetic system has two independent sources of excitations. Examples of such systems are separately excited dc machines synchronous machine, loudspeakers, tachometers etc.Let us consider that both the stator and rotor have silency. Assumptions are as for a singly - excited system.

 

       The flux linkage eq. for the two windings are

 

                                   Ψ1 = L1I1 + Mi2

 

                                   Ψ2 = L2I2 + Mi1

 

      The instantaneous voltage eq. for the two coils are

 

                                    V1 = R1i1 + d Ψ1/dt

 

                                    V2 = R2i2 + d Ψ2/dt

 

  Substituting the values Ψ1 and  Ψ2

 

                                    V1 = R1i1 + d/dt + (L1i1) + d/dt (Mi2)

 

                                     V2 = R2i2 + d/dt + (L2i2) + d/dt (Mi1)

 

Now the inductances are independent of currents and depend on the position of the root angle θm which is a function of time. Similarly, current are time dependent  and are not function of inductances. Therfore,

 

                                     V1 = R1i1 + L1di1/dt + i1dL1/dt + Mdi2/dt + i2dM/dt

 

                                     V2 = R2i2 + L2di12/dt + i2dL2/dt + Mdi1/dt + i1dM/dt

 

By multiplying we get,

 

                                    V1i1 = R1i1+ L1i1di1/dt + i12dL/dt + i1Mdi2/dt + i1i2dM/dt

 

                                    V2i2 = R2i2+ L2i2di2/dt + i22dL/dt + i2Mdi1/dt + i1i2dM/dt

 

Now we get,

 

                           (( v1i1 + v2i2 ) dt =(( R1i12 + R2i22 ) dt + (( L1i1di1 + L2i2di2 + i1Mdi2 + 2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

         Also,   [Useful electrical energy input] =  (( v1i1 + v2i2 ) dt - (( R1i12 + R2i22 ) dt

 

            [Energy to field storage in the electrical systems] + [Electrical to mechanical energy] = (( L1i1di1 + L2i2di2 + i1Mdi2 +2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

Stored energy in the Magnetic field

The instantaneous value of energy stored in the magnetic field depends on the inductance and current values at the instant considered. This energy may be found by considering the transductor to be stationary and the coils to be energized from zero current to the required instantaneous values of current. There is no mechanical output and Wem is zero. The inductance values are constant. Therefore terms dL1, dL2 and dM become zero

 

        (dWfe = oi1(L1i1di1 + oi2(L2i2di2 + oi2,i2 ( (i2Mdi1 + i1 Mdi2 )

 

         [Total Wfe] = 1/2L1i12 + 1/2L2i22 + Mi1i2

 

 Electromagnetic Torque

 

  If the transductor rotates, the rate of change of field energy with respect to time is given by differentiating.

 

             dWfe/dt = 1/2L1 d/dt i12 + 1/2i12 dL1/dt + 1/2L2 di2/dt2 + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

 

             dWfe/dt = L1i1 di1/dt  + 1/2i12 dL1/dt + L2i2 di2/dt + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

Integrated with respect to time

 

                       (dWfe = Wfe = ((L1i1di1 + 1/2i12dL1 + L2i2di2 + 1/2i22dL2) + i1i2dM + i1Mdi1

 

    This is general eq. for a moving transducer in which L1, L2 and M, i1 and i2 are all varying with position and time. On comparing we get,

 

           Wem = [Electrical to mechanical energy] =  ((1/2 i12dL1 + 1/2i22dL2 + i2i2dM)

 

               Differentiating with respect to θm

 

              dWem/d θm = ½ i12 dL1/d θm = ½ i22 dM/d θm

 

           as only L1, L2 and M are dependent on θm

 

       It includes the case of singly - excited system when one of the two current is equal to zero so that the expression for the torque becomes

 

                       Τe = i2/2 dl/d θm

 

         The first two terms of the torque are reluctance torques or saliency torques. The last term i1i2 dM/dθ is called the co - alignment torque, that is two superimposed fields, that try to align.

 

         For machines having uniform air gaps reluctance torque is not produced.


Related Discussions:- Derive the expression of torque in closely excited system.

Screw jack, give equivalence of screw jack and friction on an inclined plan...

give equivalence of screw jack and friction on an inclined plane

Air-gas cross-limiting and air-gas ratio control, Q. Air-Gas Cross-Limiting...

Q. Air-Gas Cross-Limiting and Air-Gas Ratio Control? The Steam Generator firing demand signal is directed to two discrete signal selectors. A low signal selector ensures that

Explain the process for solve screw conveyer problem, Process for solve scr...

Process for solve screw conveyer problem For fully automatic extension of screw conveyer according to screed width we have to go for some design changes, At the end of main

Define stress, Define stress: Sol.: When body is acted upon by load ...

Define stress: Sol.: When body is acted upon by load or external force, it undergoes deformation (that is, change in shape or dimension) which increases gradually. At the ti

Maximum shear stress and angle of twist, Maximum shear stress and angle of ...

Maximum shear stress and angle of twist: Torques are applied on the shaft as illustrated in Figure. Discover in which portion of the shaft, maximum shear stress & angle of twi

Reduce expressions for the hydrostatic center, Reduce expressions for the h...

Reduce expressions for the hydrostatic center and force of pressure in case of an inclined plane surface submerged in a fluid.

Determine the maximum hoop - conical shells, Determine the maximum hoop: ...

Determine the maximum hoop: A conical water tank of height 2 metres & base radius 500 mm is supported at top and is full of water. The thickness of the wall is refer to 24 mm,

Flux shielded arc welding, FLUX SHIELDED ARC WELDING This process is p...

FLUX SHIELDED ARC WELDING This process is popularly known as Submerged Arc Welding (SAW).This is a fully mechanised welding process. The electrode is a continuous metallic sol

Illustrate reversible-irreversible and quasi-static process, (a) Illustrate...

(a) Illustrate reversible, irreversible and Quasi-static process with examples. (b) What do you mean by terms change of state, path, process, property, cycle. (c) Distinguish

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd