Derive the expression of torque in closely excited system., Mechanical Engineering

Assignment Help:

Q. Derive the expression of torque developed in closely excited magnetic system. Clearly explain then assumption made.

 

Sol. Double - Excited System

 A doubly - excited magnetic system has two independent sources of excitations. Examples of such systems are separately excited dc machines synchronous machine, loudspeakers, tachometers etc.Let us consider that both the stator and rotor have silency. Assumptions are as for a singly - excited system.

 

       The flux linkage eq. for the two windings are

 

                                   Ψ1 = L1I1 + Mi2

 

                                   Ψ2 = L2I2 + Mi1

 

      The instantaneous voltage eq. for the two coils are

 

                                    V1 = R1i1 + d Ψ1/dt

 

                                    V2 = R2i2 + d Ψ2/dt

 

  Substituting the values Ψ1 and  Ψ2

 

                                    V1 = R1i1 + d/dt + (L1i1) + d/dt (Mi2)

 

                                     V2 = R2i2 + d/dt + (L2i2) + d/dt (Mi1)

 

Now the inductances are independent of currents and depend on the position of the root angle θm which is a function of time. Similarly, current are time dependent  and are not function of inductances. Therfore,

 

                                     V1 = R1i1 + L1di1/dt + i1dL1/dt + Mdi2/dt + i2dM/dt

 

                                     V2 = R2i2 + L2di12/dt + i2dL2/dt + Mdi1/dt + i1dM/dt

 

By multiplying we get,

 

                                    V1i1 = R1i1+ L1i1di1/dt + i12dL/dt + i1Mdi2/dt + i1i2dM/dt

 

                                    V2i2 = R2i2+ L2i2di2/dt + i22dL/dt + i2Mdi1/dt + i1i2dM/dt

 

Now we get,

 

                           (( v1i1 + v2i2 ) dt =(( R1i12 + R2i22 ) dt + (( L1i1di1 + L2i2di2 + i1Mdi2 + 2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

         Also,   [Useful electrical energy input] =  (( v1i1 + v2i2 ) dt - (( R1i12 + R2i22 ) dt

 

            [Energy to field storage in the electrical systems] + [Electrical to mechanical energy] = (( L1i1di1 + L2i2di2 + i1Mdi2 +2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

Stored energy in the Magnetic field

The instantaneous value of energy stored in the magnetic field depends on the inductance and current values at the instant considered. This energy may be found by considering the transductor to be stationary and the coils to be energized from zero current to the required instantaneous values of current. There is no mechanical output and Wem is zero. The inductance values are constant. Therefore terms dL1, dL2 and dM become zero

 

        (dWfe = oi1(L1i1di1 + oi2(L2i2di2 + oi2,i2 ( (i2Mdi1 + i1 Mdi2 )

 

         [Total Wfe] = 1/2L1i12 + 1/2L2i22 + Mi1i2

 

 Electromagnetic Torque

 

  If the transductor rotates, the rate of change of field energy with respect to time is given by differentiating.

 

             dWfe/dt = 1/2L1 d/dt i12 + 1/2i12 dL1/dt + 1/2L2 di2/dt2 + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

 

             dWfe/dt = L1i1 di1/dt  + 1/2i12 dL1/dt + L2i2 di2/dt + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

Integrated with respect to time

 

                       (dWfe = Wfe = ((L1i1di1 + 1/2i12dL1 + L2i2di2 + 1/2i22dL2) + i1i2dM + i1Mdi1

 

    This is general eq. for a moving transducer in which L1, L2 and M, i1 and i2 are all varying with position and time. On comparing we get,

 

           Wem = [Electrical to mechanical energy] =  ((1/2 i12dL1 + 1/2i22dL2 + i2i2dM)

 

               Differentiating with respect to θm

 

              dWem/d θm = ½ i12 dL1/d θm = ½ i22 dM/d θm

 

           as only L1, L2 and M are dependent on θm

 

       It includes the case of singly - excited system when one of the two current is equal to zero so that the expression for the torque becomes

 

                       Τe = i2/2 dl/d θm

 

         The first two terms of the torque are reluctance torques or saliency torques. The last term i1i2 dM/dθ is called the co - alignment torque, that is two superimposed fields, that try to align.

 

         For machines having uniform air gaps reluctance torque is not produced.


Related Discussions:- Derive the expression of torque in closely excited system.

Heat balance sheet for an i.c engine, (a) Briefly explain the following per...

(a) Briefly explain the following performance parameters of I.C. engine : (i) Indicated men effective pressure (Pim) (ii) Brake power (BP) (iii) Indicated power (IP) (

Explain ericsson cycle, (a) Write short note on following : (i) Ericsson...

(a) Write short note on following : (i) Ericsson cycle (ii) Diesel cycle (iii) Stirling cycle (b) The swept volume of a diesel cycle engine working on dual cycle is 0.0

The ordinate dimension command-autocad, The Ordinate Dimension Command ...

The Ordinate Dimension Command We can use The Ordinate command to annotate co-ordinate points with X or Y values. This might be useful for setting-out on site plans.

Electrical technology, Hi there could I please get a quote for the attached...

Hi there could I please get a quote for the attached Electrical assignment please. Particular attention needs to be taken in terms of the instructions

What is metal jacketing, Q. What is Metal Jacketing? a) Metal jacketing...

Q. What is Metal Jacketing? a) Metal jacketing shall be Alcan T-3000-H14 series, T-1100-H14 or approved equivalent stucco embossed aluminum with a factory applied moisture barr

Define a crm and what are its uses, The process of learning more about clie...

The process of learning more about clients needs such as information about customers , sales, marketing effectiveness, responsiveness and market trends is called as Customer Relati

Steam turbine, Stea m Turbine: INTRODUCTIO N:   Steam turbine is ch...

Stea m Turbine: INTRODUCTIO N:   Steam turbine is chief mover in which rotary motion can be obtained by a gradual change of momentum of steam. The force exerted on blade is

Explain about structural design of combined footing, Explain about structur...

Explain about structural design of combined footing. Structural Design of Combined Footing The rectangular and trapezoidal combined footings are designed assuming uniform so

What is the objective of hydrostatic sensor paver machine, What is the obje...

What is the objective of hydrostatic sensor paver machine To eliminate the problem in screw conveyer extension of hydrostatic sensor paver machine as per screed width" The p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd