Deletion from a red-black tree, Data Structure & Algorithms

Assignment Help:

Deletion in a RBT uses two main processes, namely,

Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in binary search tree.

Procedure 2: when the node is removed from a tree, and after deletion, there might be chances of losing Red-Black Properties in a tree and so, some of the cases are to be considered to retain those properties.

This process is called only while the successor of the node to be deleted is Black, however if y is red, the red- black properties yet hold and for the following reasons:

  • No red nodes have been made adjacent
  • No black heights in the tree have altered
  • y could not have been the root

Now, the node (say x) that takes the position of the deleted node (say z) will be called in process 2. Now, this process starts with a loop to make the extra black up to the tree until

o   X points to a black node

o   Rotations to be performed and recoloring to be done

o   X is a pointer to the root wherein the extra black can be easily removed

 This while loop will be executed till x becomes root and its color is red. Here, a new node (say w) is taken which is the sibling of x.

There are four cases that we will be letting separately as follows:

Case 1: If color of w's sibling of x is red

Since W must have black children, we can change the colors of w & p (x) and then left rotate p (x) and the new value of w to be the right node of parent of x.  Now, the conditions are satisfied and we switch over to case 2, 3 and 4.

Case 2: If color of w is black & both of its children are also black.

As w is black, we make w to be red leaving x with only one black and assign parent (x) to be the new value of x.  Now, the condition will be again verified, i.e. x = left (p(x)).

Case 3: If the color of w is black, however its left child is red and w's right child is black. After entering case-3, we change the color of left child of w to black and w to be red and then carry out right rotation on w without violating any of the black properties. Now the new sibling w of x is black node with a red right child and therefore case 4 is obtained.

Case 4: While w is black and w's right child is red.

It can be done by making some color changes and performing a left rotation on p(x). We can delete the extra black on x, making it single black. Setting x as the root causes the while loop to terminate.


Related Discussions:- Deletion from a red-black tree

Applications of avl trees, AVL trees are applied into the given situations:...

AVL trees are applied into the given situations: There are few insertion & deletion operations Short search time is required Input data is sorted or nearly sorted

Recurrence relation, solve the following relation by recursive method: T(n...

solve the following relation by recursive method: T(n)=2T(n^1/2)+log n

Construction of a binary tree , Q. Construct a binary tree whose nodes in i...

Q. Construct a binary tree whose nodes in inorder and preorder are written as follows: Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 Preorder: 20, 15, 10

Reverse order of elements on a slack, Q. Reverse the order of the elements ...

Q. Reverse the order of the elements on a stack S    (i) by using two additional stacks (ii) by using one additional queue. Ans :      L e t S be the stac

Program segment for quick sort, Illustrates the program segment for Quick s...

Illustrates the program segment for Quick sort. It uses recursion. Program 1: Quick Sort Quicksort(A,m,n) int A[ ],m,n { int i, j, k; if m { i=m; j=n+1; k

Advantages of the last in first out method, Materials consumed are priced i...

Materials consumed are priced in a systematic and realistic manner. It is argued that current acquisition costs are incurred for the purpose of meeting current production and sales

Process of decision making under uncertainty, (a) Describe the steps involv...

(a) Describe the steps involved in the process of decision making under uncertainty. (b) Explain the following principles of decision making: (i) Laplace, (ii) Hurwicz. (c

Determine about the push operation, Determine about the push operation ...

Determine about the push operation A Container may or may not be accessible by keys, so it can't make assumptions about element retrieval methods (for example, it cannot have a

If, 1. Start 2. Get h 3. If h T=288.15+(h*-0.0065) 4. else if h T=2...

1. Start 2. Get h 3. If h T=288.15+(h*-0.0065) 4. else if h T=216.65 5. else if h T=216.65+(h*0.001) 6. else if h T=228.65+(h*0.0028) 7. else if h T=270.65 8.

Tree traversals, There are three kinds of tree traversals, namely, Postorde...

There are three kinds of tree traversals, namely, Postorder , Preorder and Inorder. Preorder traversal: Each of nodes is visited before its children are visited; first the roo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd