Deletion from a red-black tree, Data Structure & Algorithms

Assignment Help:

Deletion in a RBT uses two main processes, namely,

Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in binary search tree.

Procedure 2: when the node is removed from a tree, and after deletion, there might be chances of losing Red-Black Properties in a tree and so, some of the cases are to be considered to retain those properties.

This process is called only while the successor of the node to be deleted is Black, however if y is red, the red- black properties yet hold and for the following reasons:

  • No red nodes have been made adjacent
  • No black heights in the tree have altered
  • y could not have been the root

Now, the node (say x) that takes the position of the deleted node (say z) will be called in process 2. Now, this process starts with a loop to make the extra black up to the tree until

o   X points to a black node

o   Rotations to be performed and recoloring to be done

o   X is a pointer to the root wherein the extra black can be easily removed

 This while loop will be executed till x becomes root and its color is red. Here, a new node (say w) is taken which is the sibling of x.

There are four cases that we will be letting separately as follows:

Case 1: If color of w's sibling of x is red

Since W must have black children, we can change the colors of w & p (x) and then left rotate p (x) and the new value of w to be the right node of parent of x.  Now, the conditions are satisfied and we switch over to case 2, 3 and 4.

Case 2: If color of w is black & both of its children are also black.

As w is black, we make w to be red leaving x with only one black and assign parent (x) to be the new value of x.  Now, the condition will be again verified, i.e. x = left (p(x)).

Case 3: If the color of w is black, however its left child is red and w's right child is black. After entering case-3, we change the color of left child of w to black and w to be red and then carry out right rotation on w without violating any of the black properties. Now the new sibling w of x is black node with a red right child and therefore case 4 is obtained.

Case 4: While w is black and w's right child is red.

It can be done by making some color changes and performing a left rotation on p(x). We can delete the extra black on x, making it single black. Setting x as the root causes the while loop to terminate.


Related Discussions:- Deletion from a red-black tree

Linked list, write an algorithm for multiplication of two sparse matrices u...

write an algorithm for multiplication of two sparse matrices using Linked Lists

Representation of a sparse matrix, Let us assume a sparse matrix from stora...

Let us assume a sparse matrix from storage view point. Assume that the entire sparse matrix is stored. Then, a significant amount of memory that stores the matrix consists of zeroe

Dqueue, algorithm of output restricted queue.

algorithm of output restricted queue.

What is a linear array, What is a linear array? An array is a way to re...

What is a linear array? An array is a way to reference a series of memory locations using the similar name. Every memory location is shown by an array element. An  array elemen

Explain Hashing, What do you mean by hashing? Hashing gives the direct ...

What do you mean by hashing? Hashing gives the direct access of record from the file no matter where the record is in the file. This is possible with the help of a hashing func

What is keyed access- container, What is Keyed Access- Container A c...

What is Keyed Access- Container A collection may allow its elements to be accessed by keys. For instance, maps are unstructured containers which allows their elements to be

What is binary search, What is binary search?   Binary search is most ...

What is binary search?   Binary search is most useful when list is sorted. In binary search, element present in middle of the list is determined. If key (the number to search)

The threaded binary tree, By changing the NULL lines in a binary tree to th...

By changing the NULL lines in a binary tree to the special links called threads, it is possible to execute traversal, insertion and deletion without using either a stack or recursi

Implement a min-heap, Description A heap is an efficient tree-based data...

Description A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following opera

Ruby implementation of the symbol abstract data type, Ruby implementation o...

Ruby implementation of the Symbol ADT Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances immutable that corresponds to the relative la

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd