Deletion from a red-black tree, Data Structure & Algorithms

Assignment Help:

Deletion in a RBT uses two main processes, namely,

Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in binary search tree.

Procedure 2: when the node is removed from a tree, and after deletion, there might be chances of losing Red-Black Properties in a tree and so, some of the cases are to be considered to retain those properties.

This process is called only while the successor of the node to be deleted is Black, however if y is red, the red- black properties yet hold and for the following reasons:

  • No red nodes have been made adjacent
  • No black heights in the tree have altered
  • y could not have been the root

Now, the node (say x) that takes the position of the deleted node (say z) will be called in process 2. Now, this process starts with a loop to make the extra black up to the tree until

o   X points to a black node

o   Rotations to be performed and recoloring to be done

o   X is a pointer to the root wherein the extra black can be easily removed

 This while loop will be executed till x becomes root and its color is red. Here, a new node (say w) is taken which is the sibling of x.

There are four cases that we will be letting separately as follows:

Case 1: If color of w's sibling of x is red

Since W must have black children, we can change the colors of w & p (x) and then left rotate p (x) and the new value of w to be the right node of parent of x.  Now, the conditions are satisfied and we switch over to case 2, 3 and 4.

Case 2: If color of w is black & both of its children are also black.

As w is black, we make w to be red leaving x with only one black and assign parent (x) to be the new value of x.  Now, the condition will be again verified, i.e. x = left (p(x)).

Case 3: If the color of w is black, however its left child is red and w's right child is black. After entering case-3, we change the color of left child of w to black and w to be red and then carry out right rotation on w without violating any of the black properties. Now the new sibling w of x is black node with a red right child and therefore case 4 is obtained.

Case 4: While w is black and w's right child is red.

It can be done by making some color changes and performing a left rotation on p(x). We can delete the extra black on x, making it single black. Setting x as the root causes the while loop to terminate.


Related Discussions:- Deletion from a red-black tree

Program segment for quick sort, Illustrates the program segment for Quick s...

Illustrates the program segment for Quick sort. It uses recursion. Program 1: Quick Sort Quicksort(A,m,n) int A[ ],m,n { int i, j, k; if m { i=m; j=n+1; k

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

The searching technique that takes o (1) time to find a data, The searching...

The searching technique that takes O (1) time to find a data is    Hashing is used to find a data

Define ordinary variable, Ordinary variable An ordinary variable of a e...

Ordinary variable An ordinary variable of a easy data type can store a one element only

Polynomials - represented by using arrays, /* the program accepts two polyn...

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/ #include void main() { int poly1[6][

Implement an algorithm to simulate car re-organizing, Design  and implement...

Design  and implement  an algorithm  to simulate car  re-organizing of the train at the railway switching junction. You can only use stacks as the data structure to represent the t

Trees, Have you ever thought about the handling of our files in operating s...

Have you ever thought about the handling of our files in operating system? Why do we contain a hierarchical file system? How do files saved & deleted under hierarchical directories

Space-complexity of the algorithm, The space-complexity of the algorithm is...

The space-complexity of the algorithm is a constant. It just needs space of three integers m, n and t. Thus, the space complexity is O(1). The time complexity based on the loop

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd