Deflection at the centre - simply supported beam, Mechanical Engineering

Assignment Help:

Deflection at the centre:

A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)

 

2109_Deflection at the centre - simply supported beam.png

Taking moments around A,

24 × 2 × 1 = RB  × 6

RB  = 8 kN (↑)                     -------- (2)

RA  = 48 - 8 = 40 kN (↑).         ------------(3)

By apply the Udl over the portion DB downwards and upwards,

 

                                 Figure

M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)

Note down that the third term vanishes if x < 2 m.

= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)

EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)

EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1

= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)

EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)

Here again note that the third term vanishes for x < 2 m.

at A,      x = 0,    y = 0  ∴ C2  = 0

at B,  x = 6 m,     y = 0         

0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6

C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3

∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)

The third term vanishes.

Slope at A, (x = 0),     27

θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)

            = -(1/300) rad = - 3.33 × 10- 3  rad

 

Slope at B, (x = 6 m),

EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)

 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)

= + 2.27 × 10- 3  radian

Slope at C, (x = 3 m), i.e. x > 2 m

EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)

θC = 20 /3 EI = 0.47 × 10- 3  radians

EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)

Deflection at centre, (x = 3 m),

EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3

yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)

= - 5 mm

For maximum deflection,

dy/ dx  = 0

0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)

= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)

=- 4x2  + 48 x - (296 /3)

∴          x2  - 12x + (74 /3 )= 0

x = 2.63 m , x > 2m

EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7

∴ ymax  = - 5.087 mm;  - 5.1 mm


Related Discussions:- Deflection at the centre - simply supported beam

Conjugate Cams:, I require design procedure of Conjugate Cams

I require design procedure of Conjugate Cams

Two position synthesis, Two position synthesis of crank rocker mechanisms

Two position synthesis of crank rocker mechanisms

Helix angle, what is helix angle and how to determine it?

what is helix angle and how to determine it?

What is two way punching shear, What is Two Way Punching Shear? Two Way...

What is Two Way Punching Shear? Two Way Punching Shear In columns, generally the tendency of the column is to punch through the footing.  This also is to be considered in de

#strength of materials, Distribution of shearing stresses on l--sections an...

Distribution of shearing stresses on l--sections and miscellaneous sections

Strenght of material, how to calculate point of contraflexure in SFD and BM...

how to calculate point of contraflexure in SFD and BMD

Casting, can the superheat be in percentage?

can the superheat be in percentage?

Front top view of the motorcycle part of motorcycle, Figure : Front Top Vie...

Figure : Front Top View of the Motorcycle Part No. Part Name Functions 1 Turn signal switch Used to give

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd