Critical points, Mathematics

Assignment Help:

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true.

f ′ (c ) = 0        OR             f ′ (c ) doesn't exist

Note  as well that we require that f (c ) exists in order for x = c to in fact be a critical point. It is significant, & frequently overlooked, point.

The key point of this section is to work some instance finding critical points.  Thus, let's work some examples.

Example   Find out all the critical points for the function.

                      f ( x ) =6x5 + 33x4 - 30x3 + 100

Solution : First we need the derivative of the function to find the critical points & thus let's get that and notice that we'll factor out it as much as possible to make our life simple while we go to discover the critical points.

f ′ ( x ) =30 x4 + 132 x3 - 90 x2

(6 x2 +5x2 + 22 x -15)

( 6 x2 (5x - 3) ( x + 5)

Now, our derivative is polynomial and therefore will exist everywhere.  So the only critical points will be those values of x that make the derivative zero.  Thus, we have to solve.

                                              6 x2(5x - 3) ( x + 5) = 0

Since this is the factored form of the derivative it's pretty simple to recognize the three critical points. They are,

                                      x = -5, x = 0, x = 3/5

Polynomials are generally fairly simple functions to find critical points for provided the degree doesn't get so large that we have trouble finding the roots of the derivative.

Most of the more "interesting" functions for finding critical points aren't polynomials however. Thus let's take a look at some functions that require a little more effort on our part.


Related Discussions:- Critical points

Miss, how do you find the average of a number

how do you find the average of a number

Unionz, Need a problem solved

Need a problem solved

Ratio, how to make a tape diagram and a equivalent ratio

how to make a tape diagram and a equivalent ratio

Activity example of one to one correspondence learning, Devise one activity...

Devise one activity each to help the child understand 'as many as' and 'one-to-one correspondence'. Try them out on a child/children in your neighbourhood, and record your observat

Who made clothes for, on april 26, jonh dough wrote a check#374 to Miller P...

on april 26, jonh dough wrote a check#374 to Miller Pharmacy for $16.00 , is this a deposit or withdrawal

Why is it important the the enlightenment grew out, Why is it important the...

Why is it important the the Enlightenment grew out of the salons and other meeting places of Europe? Who was leading the charge? Why was this significant? Where there any names or

Definition of laplace transforms, You know that it's all the time a little ...

You know that it's all the time a little scary while we devote an entire section just to the definition of something. Laplace transforms or just transforms can appear scary while w

Arc length for parametric equations, Arc Length for Parametric Equations ...

Arc Length for Parametric Equations L = ∫ β α √ ((dx/dt) 2 + (dy/dt) 2 ) dt Note: that we could have utilized the second formula for ds above is we had supposed inste

Example of one-to-one correspondence, An educator placed 10 pebbles in a ro...

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pe

Formula to calculate the surface area of basketball, Keith wants to know th...

Keith wants to know the surface area of a basketball. Which formula will he use? The surface area of a sphere is four times π times the radius squared.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd