Critical points, Mathematics

Assignment Help:

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true.

f ′ (c ) = 0        OR             f ′ (c ) doesn't exist

Note  as well that we require that f (c ) exists in order for x = c to in fact be a critical point. It is significant, & frequently overlooked, point.

The key point of this section is to work some instance finding critical points.  Thus, let's work some examples.

Example   Find out all the critical points for the function.

                      f ( x ) =6x5 + 33x4 - 30x3 + 100

Solution : First we need the derivative of the function to find the critical points & thus let's get that and notice that we'll factor out it as much as possible to make our life simple while we go to discover the critical points.

f ′ ( x ) =30 x4 + 132 x3 - 90 x2

(6 x2 +5x2 + 22 x -15)

( 6 x2 (5x - 3) ( x + 5)

Now, our derivative is polynomial and therefore will exist everywhere.  So the only critical points will be those values of x that make the derivative zero.  Thus, we have to solve.

                                              6 x2(5x - 3) ( x + 5) = 0

Since this is the factored form of the derivative it's pretty simple to recognize the three critical points. They are,

                                      x = -5, x = 0, x = 3/5

Polynomials are generally fairly simple functions to find critical points for provided the degree doesn't get so large that we have trouble finding the roots of the derivative.

Most of the more "interesting" functions for finding critical points aren't polynomials however. Thus let's take a look at some functions that require a little more effort on our part.


Related Discussions:- Critical points

Harmonic progression (h.p.), Three quantities a, b and c are said to ...

Three quantities a, b and c are said to be in harmonic progression if, In this case we observe that we have to consider three terms in o

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Calcukus, A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an ...

A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an initial dose of 1600 mg will the drug reach its minimum therapeutic value of 900 mg in the body?

gauss elimination method , Question: Use  Gauss elimination method to ...

Question: Use  Gauss elimination method to solve the following system of equations.  -y +3z=4  2x-y-2z= 2  2x-2y+z =6  4x-y-7z= 0

Tutor, I AM A EXPERT OF MATHEMATICS.CAN I BECOME A TUTOR? PLEASE TELL ME SO...

I AM A EXPERT OF MATHEMATICS.CAN I BECOME A TUTOR? PLEASE TELL ME SOON.

Function of a function, Function of a Function Suppose ...

Function of a Function Suppose y is a function of z,            y = f(z) and z is a function of x,            z = g(x)

Standard basis vectors -application of scalar multiplication, Standard Basi...

Standard Basis Vectors Revisited In the preceding section we introduced the idea of standard basis vectors with no really discussing why they were significant.  We can now do

Cylinder - three dimensional spaces, Cylinder The below equation is th...

Cylinder The below equation is the common equation of a cylinder. x 2 /a 2 + y 2 /b 2 = 1 This is known as a cylinder whose cross section is an ellipse.  If a = b we

Compound interest, Draw a flowchart for accumulated principal at the end of...

Draw a flowchart for accumulated principal at the end of 5 years by taking into account compound interest?

Matrices, Ask qudefination of empty matrixestion #Minimum 100 words accepte...

Ask qudefination of empty matrixestion #Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd