Critical points, Mathematics

Assignment Help:

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true.

f ′ (c ) = 0        OR             f ′ (c ) doesn't exist

Note  as well that we require that f (c ) exists in order for x = c to in fact be a critical point. It is significant, & frequently overlooked, point.

The key point of this section is to work some instance finding critical points.  Thus, let's work some examples.

Example   Find out all the critical points for the function.

                      f ( x ) =6x5 + 33x4 - 30x3 + 100

Solution : First we need the derivative of the function to find the critical points & thus let's get that and notice that we'll factor out it as much as possible to make our life simple while we go to discover the critical points.

f ′ ( x ) =30 x4 + 132 x3 - 90 x2

(6 x2 +5x2 + 22 x -15)

( 6 x2 (5x - 3) ( x + 5)

Now, our derivative is polynomial and therefore will exist everywhere.  So the only critical points will be those values of x that make the derivative zero.  Thus, we have to solve.

                                              6 x2(5x - 3) ( x + 5) = 0

Since this is the factored form of the derivative it's pretty simple to recognize the three critical points. They are,

                                      x = -5, x = 0, x = 3/5

Polynomials are generally fairly simple functions to find critical points for provided the degree doesn't get so large that we have trouble finding the roots of the derivative.

Most of the more "interesting" functions for finding critical points aren't polynomials however. Thus let's take a look at some functions that require a little more effort on our part.


Related Discussions:- Critical points

Finish the work., six men and Eight boys can finish a piece of work in 14 d...

six men and Eight boys can finish a piece of work in 14 days while  eight men and twelve boys can do it in 10 days. Find the time taken by  1man alone and that by 1boy alone to fin

Briefly explain markov chains, Question 1 An experiment succeeds twice as ...

Question 1 An experiment succeeds twice as often as it fails. Find the chance that in the next six trials there will be at least four successes Question 2 An insurance compan

Sample of proportion program., help me with how to write sample of proport...

help me with how to write sample of proportion using visual basic

Interest, kolushushi borrowed tsh 250000/- and paid135000/- as interest in ...

kolushushi borrowed tsh 250000/- and paid135000/- as interest in 3 years. what rate of interest was paid

Find and classify the differential equation, Find and classify the equilibr...

Find and classify the equilibrium solutions of the subsequent differential equation. y' = y 2 - y - 6 Solution The equilibrium solutions are to such differential equati

Arithmetic progression., 1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d ar...

1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d are in A.P 2.The nth term of an A.P is an+b.Find the sum of the series upto n terms.

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd