Critical points, Mathematics

Assignment Help:

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true.

f ′ (c ) = 0        OR             f ′ (c ) doesn't exist

Note  as well that we require that f (c ) exists in order for x = c to in fact be a critical point. It is significant, & frequently overlooked, point.

The key point of this section is to work some instance finding critical points.  Thus, let's work some examples.

Example   Find out all the critical points for the function.

                      f ( x ) =6x5 + 33x4 - 30x3 + 100

Solution : First we need the derivative of the function to find the critical points & thus let's get that and notice that we'll factor out it as much as possible to make our life simple while we go to discover the critical points.

f ′ ( x ) =30 x4 + 132 x3 - 90 x2

(6 x2 +5x2 + 22 x -15)

( 6 x2 (5x - 3) ( x + 5)

Now, our derivative is polynomial and therefore will exist everywhere.  So the only critical points will be those values of x that make the derivative zero.  Thus, we have to solve.

                                              6 x2(5x - 3) ( x + 5) = 0

Since this is the factored form of the derivative it's pretty simple to recognize the three critical points. They are,

                                      x = -5, x = 0, x = 3/5

Polynomials are generally fairly simple functions to find critical points for provided the degree doesn't get so large that we have trouble finding the roots of the derivative.

Most of the more "interesting" functions for finding critical points aren't polynomials however. Thus let's take a look at some functions that require a little more effort on our part.


Related Discussions:- Critical points

6, 200000+500

200000+500

Polar coordinates - parametric equations & polar coordinates, Polar Coordin...

Polar Coordinates Till this point we've dealt completely with the Cartesian (or Rectangular, or x-y) coordinate system.  Though, as we will see, this is not all time the easie

Triganometry, Ask question #Minimum 100 words what is the hypotunus of a r...

Ask question #Minimum 100 words what is the hypotunus of a right bangled triangle a=5@ b=25 find c accwhepted#

Topology, Is usual topology on R is comparable to lower limit topology on R...

Is usual topology on R is comparable to lower limit topology on R

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Congruence, Write a proff given angle MJL congruent with angle KJL

Write a proff given angle MJL congruent with angle KJL

Quick help for exam preparation, can you help me with entrance exam for uni...

can you help me with entrance exam for university ? i really need help so quick

Solve by factorization, Solve by factorization X 2 +(a/a+b + a+b/a)x+...

Solve by factorization X 2 +(a/a+b + a+b/a)x+1 = 0 X 2 +(a/a+b + a+b/a)x+1 =>  X 2 +(a/a+b x a+b/ax + a/a+b .a+b/a) =>  X[x+a/a+b] +a+b/a[a+a*a+b]= 0 =>  X= -a

Immediate predecessor of mahavira, The twenty-third Jaina teacher, Parsva, ...

The twenty-third Jaina teacher, Parsva, the immediate predecessor of Mahavira enjoined on his disciples four great vows. To these Mahavira addes which of the followings as the fift

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd