Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the point in question. Now it's time to formally define what we mean by "nice enough".
Definition
A function f ( x ) is called to be continuous at x = a if
A function is called continuous on the interval [a, b] if it is continuous at each of the point in the interval.
Note as well that this definition is also implicitly supposing that both f ( a ) and exist. If either of these do not present then the function will not be continuous at x = a . This definition can be turned around into the following fact.
Fact 1
If f (x) is continuous at x = a then,
It is exactly the similar fact that first we put down back while we started looking at limits along with the exception which we have replaced the phrase "nice enough" with continuous.
It's nice to at last know what we mean by "nice enough", however, the definition doesn't actually tell us just what it means for any function to be continuous. Let's take a look at an instance to help us understand just what it means for a function to be continuous.
What is Identities and Contradictions ? Look at this equation: x + 1 = 1 + x It happens to be true always, no matter what the value of x. (Try it out! What if x is 43?)
The midpoint of the line joining (2a, 4) and (-2, 3b) is (1, 2a +1).Find the values of a & b. (Ans: a = 2, b = 2) Ans : A(2a, 4) P(1, 2a + 1) B(-2,
Find out all the critical points for the function. Solution Following is the derivative for this function. Now, this looks unpleasant, though along with a little fa
a question
#quwhat is4 5/7 of 2/3estion..
Consider the wave equation utt - uxx = 0 with u(x, 0) = f(x) = 1 if-1 ut(x, 0) = ?(x) =1 if-1 Sketch snapshots of the solution u(x, t) at t = 0, 1, 2 with justification (Hint: Sket
What is Congruent Angles in Parallel Lines ? Postulate 4.1 (The Parallel Postulate) Through a given point not on a line there is exactly one line parallel to the line. T
WHAT IS PLACE VALUE? : (This section is only for your assumptions, and not-meant to be passed on to your learners.) You may have realised that in the decimal system the numeral
/100*4500/12
use an expression to write an expression with five 3s that has a value of 0
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd