Computing change for a given coin system, Mathematics

Assignment Help:

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 < v2 < . . . < vn, such that v1 = 1. For example, in the U.S. coin system we have six coins with values h1, 5, 10, 25, 50, 100i. The question is what is the best way to make change for a given integer amount A.

(a) Let c ≥ 2 be an integer constant. Suppose that you have a coin system where there are n types of coins of integer values v1 < v2 < . . . < vn, such that v1 = 1 and, for 1 < i ≤ n, vi = c · vi-1. (For example, for c = 3 and n = 4, an example would be h1, 3, 9, 27i.) Describe an algorithm which given n, c, and an initial amount A, outputs an n-element vector that indicates the minimum number of coins in this system that sums up to this amount. (Hint: Use a greedy approach.)

(b) Given an initial amount A ≥ 0, let hm1, . . . ,mni be the number of coins output by your  algorithm.

Prove that the algorithm is correct. In particular, prove the following:

(i) For 1 ≤ i ≤ n, mi ≥ 0

(ii) Pn

i=1mi · vi = A

(iii) The number of coins used is as small as possible Prove that your algorithm is optimal (in the sense that of generating the minimum number of coins) for any such currency system.

(c) Give an example of a coin system (either occurring in history, or one of your own invention) for which the greedy algorithm may fail to produce the minimum number of coins for some amount.

Your coin system must have a 1-cent coin.


Related Discussions:- Computing change for a given coin system

Technical coefficients - linear algebra and matrices, I didn't understand t...

I didn't understand the concept of Technical Coefficients, provide me assistance.

Probability, I have a question that hurts my head to work out. It is really...

I have a question that hurts my head to work out. It is really confusing for me. It sais " By the start of the 21st century, only 1 in 6 babies in America was born with blue eyes.

Definition and theorem of derivation, Definition : A function f ( x ) is c...

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

Quadratic equation, If roots of (x-p)(x-q) = c are a and b what will be th...

If roots of (x-p)(x-q) = c are a and b what will be the roots of (x-a)(x-b) = -c    please explain? Ans) (x-p)(x-q)=c x2-(p+q)x-c=0 hence,   a+b=p+q  and      a.b=pq-c

Calculate the monthly payment amount of the loan, Consider a student loan o...

Consider a student loan of $12,500 at a fixed APR of 12% for 25 years, 1. What is the monthly payment amount? 2. What is the total payment over the term of the loan? 3. OF

Prove that ad x af=ae x ab, ABCD is a rectangle. Δ ADE and Δ ABF are two tr...

ABCD is a rectangle. Δ ADE and Δ ABF are two triangles such that ∠E=∠F as shown in the figure. Prove that AD x AF=AE x AB. Ans:    Consider Δ ADE and Δ ABF ∠D = ∠B

Factors or multiples, long ago, people decided to divide the day into units...

long ago, people decided to divide the day into units called hours. they choose 24 as the number of hours in one day. why is 24 a more convenient choice than 23 or 25?

Expressions, how do you solve expressions

how do you solve expressions

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd