Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comparisons in the best and worst cases both are same. Modify the algorithm such that it will not make the next pass when the array is already sorted.
Ans:
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit. The algorithm after modifying it in the above stated manner will be as follows:- void bubble(int x[],int n) { int j,pass,hold; bool switched=true; for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above stated manner will be as follows:-
void bubble(int x[],int n)
{
int j,pass,hold;
bool switched=true;
for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=false;
for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=true; hold=x[j]; x[j]=x[j+1];
x[j+1]=hold;
}
How divide and conquer technique can be applied to binary trees? As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,
State about the Simple types - Built-In Types Values of the carrier set are atomic, that is, they can't be divided into parts. Common illustrations of simple types are inte
Define a B-Tree Justas AVL trees are balanced binary search trees, B-trees are balanced M-way search trees. A B-Tree of order M is either the empty tree or it is an M-way searc
multilist representation of graph
Prove that uniform cost search and breadth- first search with constant steps are optimal when used with the Graph-Search algorithm (see Figure). Show a state space with varying ste
Define null values. In some cases a particular entity might not have an applicable value for an attribute or if we do not know the value of an attribute for a particular entit
Sort the following array of elements using quick sort: 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8.
Explain about the Structured types - Built-In Types Values of the carrier set are not atomic, consisting rather than several atomic values arranged in some way. Common illu
Part1: Deque and Bag Implementation First, complete the Linked List Implementation of the Deque (as in Worksheet 19) and Bag ADTs (Worksheet 22). Files Needed: linkedList.c Linke
Implementing abstract data types A course in data structures and algorithms is hence a course in implementing abstract data types. It may seem that we are paying a lot of atten
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd