Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comparisons in the best and worst cases both are same. Modify the algorithm such that it will not make the next pass when the array is already sorted.
Ans:
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit. The algorithm after modifying it in the above stated manner will be as follows:- void bubble(int x[],int n) { int j,pass,hold; bool switched=true; for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above stated manner will be as follows:-
void bubble(int x[],int n)
{
int j,pass,hold;
bool switched=true;
for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=false;
for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=true; hold=x[j]; x[j]=x[j+1];
x[j+1]=hold;
}
In this project you will write a program to produce a discrete time simulation of a queue as shown in Fig. 1. Time is slotted on the input and the output. Each input packet follows
Run time complexity of an algorithm is depend on
Explain Dijkstra's algorithm Dijkstra's algorithm: This problem is concerned with finding the least cost path from an originating node in a weighted graph to a destination node
* Initialise d & pi* for each vertex v within V( g ) g.d[v] := infinity g.pi[v] := nil g.d[s] := 0; * Set S to empty * S := { 0 } Q := V(g) * While (V-S)
Question 1. How can you find out the end of a String? Write an algorithm to find out the substring of a string. 2. Explain the insertion and deletion operation of linked lis
Question 1 Write the different characteristics of an algorithm Question 2 Explain in brief the asymptotic notations Question 3 Write an algorithm of insertion sort and e
difference between recursion and iteration
Assume you are in the insurance business. Find two examples of Type 2 slowly changing dimensions in that business. As an analyst on the project, write the specifications for applyi
In the last section, we discussed regarding shortest path algorithm that starts with a single source and determines shortest path to all vertices in the graph. In this section, we
Write an algorithm to test whether a Binary Tree is a Binary Search Tree. The algorithm to test whether a Binary tree is as Binary Search tree is as follows: bstree(*tree) {
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd