Brad class collected 320 cans of food how many did required, Mathematics

Assignment Help:

Brad's class collected 320 cans of food. They boxed them in boxes of 40 cans each. How many boxes did they required?

To find the number of boxes required, you should divide the number of cans through 40; 320 ÷ 40 = 8 boxes.


Related Discussions:- Brad class collected 320 cans of food how many did required

Introduction to learning to count, INTRODUCTION : Most of us, when plannin...

INTRODUCTION : Most of us, when planning the first mathematical experience for three-year olds, think in terms of helping them memorise numbers from 1 to 20. We also teach them to

Union and intersection - set theory, Union and Intersection - Set theory ...

Union and Intersection - Set theory B ∩ C indicates the intersection of B and C. it is the set having all those elements that belong to both B and C If B = {5, 8, 11, 20, 2

Find quadratic equation using the quadratic formula, Find quadratic equatio...

Find quadratic equation using the Quadratic Formula: Solve the subsequent quadratic equation using the Quadratic Formula. 4x 2 + 2 = x 2 - 7x: Solution: Step 1.

Lucy youth group increased $1, Lucy's youth group increased $1,569 for char...

Lucy's youth group increased $1,569 for charity. They decided to split the money evenly between 3 charities. How much will each charity receive? Divide the money raised through

Marketing management , Draw the typical profile(s) of Shoppers'' Stop custo...

Draw the typical profile(s) of Shoppers'' Stop customers segments.

Theorem to computer the integral, Use green's theorem to computer the integ...

Use green's theorem to computer the integral F . dr where F = ( y^2 + x, y^2 + y) and c is bounded below the curve y= - cos(x),, above by y = sin(x) to the left by x=0 and to the r

Determine dy & dy if y = cos ( x2 + 1) - x, Determine dy & Δy  if y = cos ...

Determine dy & Δy  if y = cos ( x 2 + 1) - x as x changes from x = 2 to x = 2.03 .  Solution Firstly let's deetrmine actual the change in y, Δy . Δy = cos (( 2.03) 2

Find out the surface area of the solid - parametric curve, Find out the sur...

Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ  0 ≤ θ ≤ ?/2 Solution We wil

Solve the subsequent proportion, Solve the subsequent proportion: Exa...

Solve the subsequent proportion: Example: Solve the subsequent proportion for x. Solution: 5:x = 4:15 The product of the extremes is (5)(15) = 75. The produ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd