Bitwise logical and shift operations, Assembly Language

Assignment Help:

Part A: Bitwise Logical and Shift Operations

Create a SPARC assembly language program that extracts a bit-field from the contents of register %l0. The position of the rightmost bit of the field is indicated in register %l1, and the number of bits in the field is indicated in register %l2. The extracted field should be put into register %l3, right-shifted so that field starts at bit 0; any bits outside of the extracted field should be set to 0. Structure your program so that it operates on 3 separate inputs, each with different input data, field positions, and field widths. Your TA will provide the inputs to work with. Do not hard code any bit masks; your program should create them using the appropriate bitwise operations. Optimize your program, eliminating nop instructions where possible. Do not use m4.

Use printf() to display in hexadecimal the contents of registers %l0, %l1, %l2 before each extraction, and %l3 afterwards. Also run your program in gdb, displaying the contents of registers %l0, %l1, %l2 before each extraction, and %l3 afterwards. Capture the gdb session using script. On a separate piece of paper, show the bit pattern for each hexadecimal number for the registers %l0 and %l3, circling the extracted field.

Part B: Integer Multiplication using Add and Shift Operations

Write a SPARC assembly language program that implements the following integer multiplication algorithm:

negative = multiplier >= 0 ? 0 : 1;

product = 0;

for (i = 0; i < 32; i++) {

if (multiplier & 1)

product += multiplicand;

(product and multiplier registers combined as a unit) >> 1;

}

if (negative)

product -= multiplicand;

Structure your program so that it shows 3 different multiplications: the first should multiply two positive numbers together, the second should multiply a positive number by a negative number, and the third should multiply two negative numbers together. Your TA will provide the input data to work with. Since we don't yet know how to create subroutines, you can simply cut and paste the multiplication code to do each multiplication.

Use printf() to display in hexadecimal the contents of the product, multiplier and multiplicand registers before and after each multiplication. Optimize your program, eliminating nop instructions where possible. Do not use m4. Also run the program in gdb, displaying the contents of key registers as the program executes; you should show that the algorithm is working as expected. Capture the gdb session using script. On a separate piece of paper, show the bit pattern (binary number) for each hexadecimal number, and its decimal equivalent (in other words, show the binary and decimal values of the multiplier, multiplicand, and product).

Other Requirements

Make sure your code is properly formatted into columns, is readable and fully documented, and includes identifying information at the top of each file. You must comment each line of assembly code. Your code should also be well designed: make sure it is well organized, clear, and concise. Your TA will specify the inputs to use for the above two programs.

New Skills Needed for this Assignment:

Use of bitwise logical and shift operations
Use of branching and condition code tests
Understanding of hexadecimal and binary numbers


Related Discussions:- Bitwise logical and shift operations

Bitwise logical and shift operations, Part A: Bitwise Logical and Shift Op...

Part A: Bitwise Logical and Shift Operations Create a SPARC assembly language program that extracts a bit-field from the contents of register %l0. The position of the rightmos

Program, Write a program to separate out positive and negative numbers from...

Write a program to separate out positive and negative numbers from a given series of 16-bit hexadecimal numbers.

Hex , what is the hex value in ax after executing the instructions ax= 1E8...

what is the hex value in ax after executing the instructions ax= 1E8A bx=4080 add al,bl sub ah,bh

Modes of 8254-microprocessor, Modes of 8254 :   Mode 0 (Inter...

Modes of 8254 :   Mode 0 (Interrupt on Terminal Count)-GATE which value is 1 enables counting and GATE  which value is 0 disables counting, and GATE put not effect on

Ocw-microprocessor, There are 3 kinds of OCWs. The command word OCWI is u...

There are 3 kinds of OCWs. The command word OCWI is utilized for masking the interrupt requests; when the mask bit corresponding to an interrupt request is value 1, then the requ

Program to move contents in memory-machine level programs, Example : Write...

Example : Write a program to move the contents of the memory location 0500H to BX and also to register CX. Add immediate byte 05H to the data residing in memory location, whose ad

Program, assembly language program to find larges number in an array

assembly language program to find larges number in an array

Right triangle, code, Assembly Language How to print strings in Right Tria...

code, Assembly Language How to print strings in Right Triangle form?

Pc bus and interrupt system-microprocessor, PC Bus and Interrupt System ...

PC Bus and Interrupt System The PC Bus utilized a bus controller, address latches, and data transceivers (bidirectional data buffers). 1) Bus controller : ( Intel 8288 Bus

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd