Bayes’ theorem, Mathematics

Assignment Help:

Bayes’ Theorem

In its general form, Bayes' theorem deals with specific events, such as A1, A2,...., Ak, that have prior probabilities. These events are mutually exclusive events that cover the entire sample space. Each prior probability is already known to the decision maker, and these probabilities have the following form: P(A1), P(A2),...., P(Ak). The events with prior probabilities produce, cause, or precede another event, say B.
A conditional probability relation exists between events A1, A2, ....., Ak and event B. The conditional probabilities are P(B|A1), P(B|A2), ..., P(B|Ak).

Bayes' formula allows us to calculate the probability of an event, say, A1 occurring given that event B has already occurred with a known probability, P(B). The probability of A1 occurring given that B has already occurred is the posterior (or revised) probability. It is denoted by P(A1|B). Thus, we are given P(A1) and the P(B|A1) which we use to calculate P(A1|B).

For any event Ai, Bayes' theorem has the form

2115_bayes theorem.png

 The probability that A1 and B occur simultaneously is equal to the probability that A1 occurs multiplied by the probability that B occurs given A1. Thus, we have

P(A1 and B) = P(A1) P(B|A1)

Since A1, A2, . . . . , Ak form a partition of the entire sample space when event B occurs, only one of the events in the partition occurs. Thus, we have

P(B) = P(A1 and B) + P(A and B) + .... + P(Ak and B)

We already know that for any event Ai,

P(Ai and B) = P(Ai) P(B|Ai)

When we substitute the formula for P(Ai and B) into the equation for P(B) we obtain

P(B) = P(A1) P(B|A1) + P(A2) P(B|A2) +...+ P(Ak) P(B|Ak)

If we then substitute P(B) and P(Ai and B) into the conditional probability, i.e. P(A|B) =  623_bayes theorem1.png    we obtain the generalized version of Bayes' formula, which is shown in the box.

Bayes' Theorem

P(Ai | B)  = 419_bayes theorem2.png

 

Example 

Suppose that a personnel administrator wishes to hire one person from among a number of job applicants for a clerical position. The job to be filled is fairly simple. On the basis of past experience, the personnel director feels that there is a 0.80 probability of an applicant being able to fill the position. This probability is the prior probability.

A personnel administrator usually interviews or tests each applicant, rather than select one at random. This procedure supplies additional direct information about the applicant. In light of this additional information, the personnel director may revise the prior probability about an applicant's chances for success or failure at the job. The revised probability is the posterior probability.

The terms prior and posterior refer to the time when information is collected. Before information is obtained, we have prior probabilities. Bayes' theorem provides a means of calculating posterior probabilities from prior probabilities. The next example illustrates the use of Bayes' theorem.


Related Discussions:- Bayes’ theorem

Invoices and trade discounts, Natureland garden center buys lawn mowers tha...

Natureland garden center buys lawn mowers that list for $679.95 less a 30% discount. What is the dollar amount of the discount?

The parallelogram, love is a parallelogram where prove that love is a rect...

love is a parallelogram where prove that love is a rectangle

We know this equation a°=1.prove this?, we know that    A^m/A^m=1         ...

we know that    A^m/A^m=1                    so A^(m-m)=1                    so A^0=1.....

Fuzzy decisionmaking using minimization of regret, why we use decision maki...

why we use decision making using minimization of regret method in uncertainty?

Coordinate geometry, find the points on y axis whose distances from the poi...

find the points on y axis whose distances from the points A(6,7) and B(4,-3) are in the ratio 1:2

Estimate the probability, The following (artificial) data record the length...

The following (artificial) data record the length of stay (in days) spent on a psychiatric ward for 28 consecutive patients who have been sectioned under the mental health act, cla

Example of product moment correlation, Example of Product moment correlatio...

Example of Product moment correlation The given data was acquired during a social survey conducted in a described urban area regarding the yearly income of described families

Tangent, Tangent, Normal and Binormal Vectors In this part we want to ...

Tangent, Normal and Binormal Vectors In this part we want to look at an application of derivatives for vector functions.  In fact, there are a couple of applications, but they

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd