Bayes’ theorem, Mathematics

Assignment Help:

Bayes’ Theorem

In its general form, Bayes' theorem deals with specific events, such as A1, A2,...., Ak, that have prior probabilities. These events are mutually exclusive events that cover the entire sample space. Each prior probability is already known to the decision maker, and these probabilities have the following form: P(A1), P(A2),...., P(Ak). The events with prior probabilities produce, cause, or precede another event, say B.
A conditional probability relation exists between events A1, A2, ....., Ak and event B. The conditional probabilities are P(B|A1), P(B|A2), ..., P(B|Ak).

Bayes' formula allows us to calculate the probability of an event, say, A1 occurring given that event B has already occurred with a known probability, P(B). The probability of A1 occurring given that B has already occurred is the posterior (or revised) probability. It is denoted by P(A1|B). Thus, we are given P(A1) and the P(B|A1) which we use to calculate P(A1|B).

For any event Ai, Bayes' theorem has the form

2115_bayes theorem.png

 The probability that A1 and B occur simultaneously is equal to the probability that A1 occurs multiplied by the probability that B occurs given A1. Thus, we have

P(A1 and B) = P(A1) P(B|A1)

Since A1, A2, . . . . , Ak form a partition of the entire sample space when event B occurs, only one of the events in the partition occurs. Thus, we have

P(B) = P(A1 and B) + P(A and B) + .... + P(Ak and B)

We already know that for any event Ai,

P(Ai and B) = P(Ai) P(B|Ai)

When we substitute the formula for P(Ai and B) into the equation for P(B) we obtain

P(B) = P(A1) P(B|A1) + P(A2) P(B|A2) +...+ P(Ak) P(B|Ak)

If we then substitute P(B) and P(Ai and B) into the conditional probability, i.e. P(A|B) =  623_bayes theorem1.png    we obtain the generalized version of Bayes' formula, which is shown in the box.

Bayes' Theorem

P(Ai | B)  = 419_bayes theorem2.png

 

Example 

Suppose that a personnel administrator wishes to hire one person from among a number of job applicants for a clerical position. The job to be filled is fairly simple. On the basis of past experience, the personnel director feels that there is a 0.80 probability of an applicant being able to fill the position. This probability is the prior probability.

A personnel administrator usually interviews or tests each applicant, rather than select one at random. This procedure supplies additional direct information about the applicant. In light of this additional information, the personnel director may revise the prior probability about an applicant's chances for success or failure at the job. The revised probability is the posterior probability.

The terms prior and posterior refer to the time when information is collected. Before information is obtained, we have prior probabilities. Bayes' theorem provides a means of calculating posterior probabilities from prior probabilities. The next example illustrates the use of Bayes' theorem.


Related Discussions:- Bayes’ theorem

Tutoring , hi, i was wondering how do you provide tutoring for math specifi...

hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg

Diameter of the circle , The length of the diameter of the circle which tou...

The length of the diameter of the circle which touches the X axis at the point (1,0) and passes through the point (2,3) is ? Solution)  If a circle touches the x-axis, its equatio

Find integer if sum of two consecutive odd integers is -112, The sum of two...

The sum of two consecutive odd integers is -112. What is the larger integer? Two consecutive odd integers are numbers in order such as 3 and 5 or -31 and -29, that are each 2 n

Trigonometry, In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 de...

In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 degrees.BC=?

We know this equation a°=1.prove this?, we know that log1 to any base =0 ta...

we know that log1 to any base =0 take antilog threfore a 0 =1

What is his test average, Steve earned a 96 percent on his ?rst math test, ...

Steve earned a 96 percent on his ?rst math test, a 74% on his second test, and an 85 percent on his third test. What is his test average? Add the test grades (96 + 74 + 85 = 25

Find the polynomial g(x), On dividing the polynomial 4x 4 - 5x 3 - 39x 2 ...

On dividing the polynomial 4x 4 - 5x 3 - 39x 2 - 46x - 2 by the polynomial g(x) the quotient is x 2 - 3x - 5 and the remainder is -5x + 8.Find the polynomial g(x). (Ans:4 x 2 +

SOLUTIONS.., bunty and bubly go for jogging every morning. bunty goes aroun...

bunty and bubly go for jogging every morning. bunty goes around a square park of side 80m and bubly goes around a rectangular park with length 90m and breadth 60m.if they both take

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd