Basic differential equation, Mathematics

Assignment Help:

Two 1000 liter tanks are containing salt water. Tank 1 has 800 liters of water initially having 20 grams of salt dissolved in this and tank 2 has 1000 liters of water and initially has 80 grams of salt dissolved into this. Salt water along with a concentration of ½ gram/liter of salt enters tank 1 at a rate of 4 liters/hour. Fresh water enters into tank 2 at a rate of 7 liters/hour. With a connecting pipe water flows from tank 2 in tank 1 at a rate of 10 liters/hour. By a different connecting pipe 14 liters/hour flows out of tank 1 and 11 liters/hour are  drained out of the pipe and thus out of the system totally and only 3 liters/hour flows back in tank 2. Set up the system which will provide the amount of salt in each tank at any specified time.

Solution:

Okay, assume that Q1 (t) and Q2 (t) be the amount of salt into tank 1 and in tank 2 at any time t correspondingly.

 This time all we want to do is set up a differential equation for both tanks just as we did back while we had a particular tank. The only difference is that we now require dealing along with the fact that we've found a second inflow to both tank and the concentration of the second inflow will be the concentration of the other tank.

Recall that the basic differential equation is the rate of change of salt (Q′) equals the rate at that salt enters minus the rate at salt leaves. All entering/leaving rates are found through multiplying the flow rate times the concentration.

Now there is the differential equation for tank 1.

Q1' = (4) (1/2) + (10) (Q2/1000) - (14) (Q1/800)                                 Q1(0) = 20

= 2 + (Q2/1000) - (7Q1/400)

Under this case of differential equation the initial pair of numbers is the salt entering from the external inflow. The second set of numbers is the salt which entering in the tank from the water flowing in from tank 2. The third set is the salt leaving tank as water flows out.

Now there is the second differential equation.

Q2' = (7) (0) + (3) (Q1/800) - (10) (Q2/1000)                          Q2(0) = 80

= (3Q1/800) - (Q2/100)

Note that since the external inflow in tank 2 is fresh water the concentration of salt in it is zero.

Summarized here that the system we'd require to solve,

Q1' = 2 + (Q2/1000) - (7Q1/400)                                 Q1(0) = 20

Q1' =(3Q1/800) - (Q2/100)                                          Q2(0) = 80

This is a non-homogeneous system due to the first term in the first differential equation. If we had clean and fresh water flowing in both of these we would actually have a homogeneous system.


Related Discussions:- Basic differential equation

Prove that the ratio of the sum of odd terms, If there are (2n+1)terms  in ...

If there are (2n+1)terms  in an AP ,prove that the ratio of the sum of odd terms and the sum of even terms is (n+1):n Ans:    Let a, d be the I term & Cd of the AP. ∴ ak =

What is the probability a 3 will be rolled and a tail tossed, A die is roll...

A die is rolled and a coin is tossed. What is the probability that a 3 will be rolled and a tail tossed? Find the probability of each event separately, and then multiply the an

Number and operations, 1a.if the williams spend $385 a month on food what i...

1a.if the williams spend $385 a month on food what is their monthly income

Mathematics- in our lives , MATHEMATICS - IN OUR LIVES : What is the mo...

MATHEMATICS - IN OUR LIVES : What is the most obvious example of mathematics in your life? To many of us it is the maths that we studied in school. But is that all the mathemat

Area, #What is an easy way to find the area of any figure

#What is an easy way to find the area of any figure

Evaluate of the largest angle, The measures of the angles of a triangle are...

The measures of the angles of a triangle are in the ratio of 3:4:5. Evaluate of the largest angle. a. 75° b. 37.5° c. 45° d. 60° a. The addition of the measures of t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd