Assumptions in regression, Applied Statistics

Assignment Help:

Assumptions in Regression

To understand the properties underlying the regression line, let us go back to the example of model exam and main exam. Now we can find an estimate of a student's main exam points, if we also know his or her points on the model exam. As we have stated, a student with score of 85 in the model exam should receive points for the main exam in the vicinity of 75 to 95.

If we knew the model exam scores of all students along with their main exam scores, we would then have the population of values. The mean and the variance of the population of the model exam would be μx and σx2 and respectively. The measurements for the main exam points are  μy  and  σy2 .

The assumptions in regression are:

  1. The relationship between the distributions X and Y is linear, which implies the formula E(Y|X=x) = A + Bx at any given value of X = x.

  2. At each X, the distribution of Yx is normal, and the variances  σx2  are equal. This implies that E's have the same variance,  σ2.

  3. The Y-values are independent of each other.

  4. No assumption is made regarding the distribution of X.

    Since we do not have all of the students' course points and main exam points we must estimate the regression line E(Y|X = x) = A + BX.

    The figure shows a line that has been constructed on the scatter diagram. Note that the line seems to be drawn through the collective mid-point of the plotted points. The term  2148_simple linear regression.png  is the estimate of the true mean of Y's at any particular X = x.

    Figure 8

    682_assumptions in regression.png

Related Discussions:- Assumptions in regression

Regression analysis, Meaning and Definitions of Regression The dictiona...

Meaning and Definitions of Regression The dictionary meaning of regression is just opposite the meaning of progression. Progression means to move forward while regression means

Hypothesis, What is a null hypothesis? ..

What is a null hypothesis? ..

Different analyses of recurrent events data, Different analyses of recurren...

Different analyses of recurrent events data: The bladder cancer data listed in Wei, Lin, and Weissfeld (1989) is used in Example 54.8/49.8 of SAS to  illustrate different anal

Find the probability that a lift will weigh, Lifts usually have signs indic...

Lifts usually have signs indicating their maximum capacity. Consider a sign in a lift that reads "maximum capacity 1400kg or 20 persons". Suppose that the weights of lift-users are

Assumptions in regression, Assumptions in Regression To understand the...

Assumptions in Regression To understand the properties underlying the regression line, let us go back to the example of model exam and main exam. Now we can find an estimate o

Regression, Regression line drawn as Y=C+1075x, when x was 2, and y was 239...

Regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Liner programming , Solve the following Linear Programming Problem using S...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

Predict higpa using a logistic regression, In this problem, we use the CSDA...

In this problem, we use the CSDATA data set, which is available in 'CSDATA.txt'. We do ne an indicator variable, say HIGPA, to be 1 if the GPA is 3.0 or better and 0 other- wise. S

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd