Area under curve, C/C++ Programming

Assignment Help:
Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b.

Related Discussions:- Area under curve

I need whatsapp software in my website, I need whatsapp software in my webs...

I need whatsapp software in my website Project Description: i need whatsapp software in my website same this whatsapp if anyone can make to me this in my website Skills

Define the int data type of c language, Define the Int Data Type of C Langu...

Define the Int Data Type of C Language? The int is used to define integer numbers. The Integers are whole numbers with a range of values supported by a particular machine and t

Link list, For this program you will add and test 2 new member functions to...

For this program you will add and test 2 new member functions to the IntSLList class posted on the website. The two member functions are: insertByPosn(int el, int pos) Assuming t

Charity Ball Organizer, Charity Ball Organizer Many charities support good...

Charity Ball Organizer Many charities support good causes, but one of the difficulties each of them has is organizing their fundraising events. After nearly a semester of C progra

Area Under Curve, Write a program to find the area under the curve y = f(x)...

Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b. The area under a curve between two points can b

Explain union, Unions A union is also like a structure, except that onl...

Unions A union is also like a structure, except that only single variable in the union is stored in the allocated memory at a time. It is a collection of mutually exclusive var

Can a copy constructor admit an object of the similar class , Can a copy co...

Can a copy constructor admit an object of the similar class as parameter, rather than reference of the object?

Decode the given code, write c++ program to decode the given code. in mobil...

write c++ program to decode the given code. in mobile keypad the integers from 1 to 9 will display the characters from a to z and 0 will assign a space

Flow chart, obtain two numbers from thekey board,and determain and display(...

obtain two numbers from thekey board,and determain and display(if either)is the larger of two numbers.

Describe how can i allocate/unallocate an array of things?, A: Use p = new ...

A: Use p = new T[n] and delete[] p:   Fred* p = new Fred[100]; ... delete[] p; Any time you allocate an array of objects through new (generally with the [n] in the n

diana

9/4/2012 4:20:01 AM

#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve

diana

9/4/2012 4:20:21 AM

#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd