Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Evaluate the volume of the shaded region, If the hight of pipe is 18 inches...

If the hight of pipe is 18 inches, what is the volume of the shaded region in terms of π? a. 31.5π in 3 b. 126π in 3 c. 157.5 in 3 d. 58.5 in 3

Cenamatic, a tire placed on a balancing machine in a service station starts...

a tire placed on a balancing machine in a service station starts from rest an d turns through 4.7 revolutions in 1.2 seconds before reaching its final angular speed Calculate its a

Conversion\, how many mg are there in g?

how many mg are there in g?

Two circles touch internally, Two circles touch internally at a point P and...

Two circles touch internally at a point P and from a point T on the common tangent at P, tangent segments TQ and TR are drawn to the two circles. Prove that TQ = TR. Given:

Determine the area of the sail, If a triangular sail has a horizontal lengt...

If a triangular sail has a horizontal length of 30 ft and a vertical height of 83 ft , Determine the area of the sail? a. 1,245 ft 2 b. 1,155 ft 2 c. 201 ft 2 d. 2,4

What is the sample space for this experiment, A die is thrown repeatedly un...

A die is thrown repeatedly until a six comes up. What is the sample space for this experiment? HINT ;A= {6} B={1,2,3,4,5,} Ans: The sample space is = {A, BA, BBA, BBBA, BBBBA.

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

Invariant lines, What lines are invariant under the transformation [(103)(0...

What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd