Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

I need help, in 2000,nearly 18% of cars in north America were sliver. what ...

in 2000,nearly 18% of cars in north America were sliver. what percent of the cars sold were not sliver?

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Determines the possibility, There is a committee to be selected comprising ...

There is a committee to be selected comprising of 5 people from a group of 5 men and 6 women. Whether the selection is randomly done then determines the possibility of having the g

What it means to count-learning to count, What do we understand by "being a...

What do we understand by "being able to count"? Think about the following situation before you answer. Example 1: Three year-old Mini could recite numbers from I to 20 in the co

How long will it take her to save $350, Each week Jaime saves $25. How long...

Each week Jaime saves $25. How long will it take her to save $350? Divide $350 by $25; 350 ÷ 25 = 14 weeks.

Generic rectangles and greatest common factors, miaty and yesenia have a gr...

miaty and yesenia have a group of base ten blocks.Misty has six more than yesnia. Yesenia''s blocks repersent 17 together they have 22 blocks,and the total of blocks repersent 85.

Differential equations, verify liouville''s theorem for y''''''-y''''-y''+...

verify liouville''s theorem for y''''''-y''''-y''+y=0

Ratio, how to do them?

how to do them?

How much does every person required to pay rob, Rob purchased picnic food f...

Rob purchased picnic food for $33.20 to share along with three of his friends. They plan to split the cost evenly among the four friends. How much does every person required to pay

Find the sum of a+b and a-b, Find the sum of a+b, a-b, a-3b, ...... to 22 t...

Find the sum of a+b, a-b, a-3b, ...... to 22 terms. Ans:    a + b, a - b, a - 3b, up to 22 terms d= a - b - a - b = 2b S22 =22/2 [2(a+b)+21(-2b)] 11[2a + 2b - 42b] =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd