volumes for solid of revolution, Mathematics

Assignment Help:

 Volumes for Solid of Revolution

Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start out along with a function, y= f(x), in an interval [a,b].

1421_Area between Two Curves 3.png

Then we rotate this curve about a specified axis to find the surface of the solid of revolution.  For reasons of this derivation let's rotate the curve regarding the x-axis. Doing that gives the subsequent three dimensional regions.

864_Area between Two Curves 4.png

We require determining the volume of the interior of such object. To do that we will proceeds much as we did for the area in between two curves case.  We will firstly divide up the interval in n subintervals of width,

Δx = (b -a)/n

Then we will select a point from each subinterval, xi*.

 Here, in the area in between two curves case we approximated the area by using rectangles on every subinterval. For volumes we'll use disks in each subinterval to estimate the area. The area, of the face of each disk is specified by A (xi*) and the volume of each disk is

Vi = A(xi*) Δx

Now here is a sketch of this,

334_Area between Two Curves 5.png

Then the volume of the region can be approximated with,

V ≈  792_Area between Two Curves 6.png     A(xi*) Δx

Then the exact volume is,

V ≈limn→∞    792_Area between Two Curves 6.png    A(xi*) Δx

= ab A(x) dx

Therefore, in this case the volume will be the integral of the cross-sectional area on any x, A(x). Consider as well that, here, the cross-sectional area is a circle and we could go farther and find a formula for this as well. Though the formula above is more common and will work for any method of getting a cross section therefore we will leave this like this is.

In the sections where we truly use this formula we will also consider that there are ways of generating the cross section which will actually provide a cross-sectional area which is a function of y in place of x.  In these cases the formula will be as,

V = cd A(y) dy                                      c < y < d

Here we looked at rotating a curve about the x-axis; though, we could have only as simply rotated the curve about the y-axis. Actually we could rotate the curve about any vertical or horizontal axis and into all of these, case we can utilize one or both of the subsequent formulas.

V = ab A(x) dx                                      V = cd A(y) dy


Related Discussions:- volumes for solid of revolution

Trignometry, Define the given satatement : 1.sin90-sin89=sin10 using pythag...

Define the given satatement : 1.sin90-sin89=sin10 using pythagoras theoram 2. How can any value of sin and cosis always given any value of cosec.

lmc, what is the concept of lm

what is the concept of lmc

Fractions, Andre''s boss asked him to arrange bolts placing the shortest bo...

Andre''s boss asked him to arrange bolts placing the shortest bolt near the front 1 and three fourth inch 1 and 5 eigths 1 and 11 sixteenths which is the shortest

Integration of sin ³a.cos ³a , writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.co...

writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.cosa = sin 3 a.(1-sin 2 a).cosa put sin a as then cos a da = dt integral(t 3 (1-t 2 ).dt = integral of t 3 - t 5 dt = t 4 /4-t 6 /6

Fractions, A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 h...

A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 hour?

Algorithm for division, ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-ye...

ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-year-old child to solve, say, 81 + 9, the chances are that she will correctly do it. But if you ask her to solve, say 72 + 3, t

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd