de1 board, Electrical Engineering

Assignment Help:

You will design a significant project on the DE1 board. In some cases you may want to use the breadboard as well - note that all of the pins at the bottom of the breadboard are labeled with the pin they talk to on the FPGA, and thus are usable. This will be most useful to people who want to connect up to more interesting inputs and/or outputs for their design, since all of the digital logic should be done inside the FPGA. You can access these pins by having a bus connection "inout [35:0] GPIO_0" to your top-level module (like you used KEY, SW, LEDR, etc. in other labs). GPIO_0[0] is the leftmost connection (A13), and GPIO_0[35] is the rightmost connection (L18).

You may code up your design in any style presented in the labs - structural Verilog, schematics, and/or FSMs in the style of lab #5. However, you may NOT code up your design in arbitrary behavioral code - behavioral logic can be used for FSMs (like lab #5), but that is it. The only exception is seven-segment display drivers (like lab #4) and similar modules that convert a number to a picture on an output device - if you are not sure if you can use behavioral for a specific device, ask before doing it!

You may use the clock_divider circuit if you wish. However, your ENTIRE circuit should be based off of EXACTLY ONE clock. If you need two clock speeds, use the clock divider to generate the faster clock. Then, use a counter as a timer to generate an enable signal at the slower rate - all slower elements will still use the fast clock, but will only change state when the slower counter signal occurs. Take a look at the traffic light controller and the timer for an example.

Pick one of the three options : All I need is a verilog code...

Project 1 - Frogger

The urban horticulture program on campus thinks we can eliminate road-kill accidents by training the local wildlife to avoid cars. Your job is to develop a high-tech traffic simulator so they can learn how to safely cross the road (see Wikipedia under "frogger").

You'll need to have several rows of red LEDs, with moving lights to show where the cars are (they'll likely be some basic pattern, with the cars in a row slowly moving to the right or left). You'll also need a green LED for each location as well, to show the position of your frog. Then, the user should have left/right/back/forward buttons to move their frog around. The goal is to get the frog from one side of the board to the other without being in the same square as a car (squish!). They win, they play again. They lose, they become road-kill- souffle'.

You'll need a reasonable sized board (say 4x6 or so), and the frog should be able to move faster than the cars (otherwise there's no hope).

Project 2 - Mastermind

The guys down at SafeCrackersInternational need to practice their skills on electronic locks, and have hired you. Your job is to simulate the ultra-powerful 16-bit encryption locks they'll be facing in the real world.

Your system should pick a random passcode, consisting of a 4-digit number in base-4 (i.e. 0, 1, 2, or 3). Our budding safecracker will then guess the code. If they're right, they win. If not, they die... well, maybe not. These guys aren't the best in the business, so we'll give them multiple tries. But to encourage them, you should tell them how close they came. You'll have to tell them how many digits were correct (right number in right place), and how many digits were misplaced (correct number in the wrong place). Of course, don't tell them which digits were right, just how many of each type there were.

To help grade these burglars-in-training, we'll also want a count of how many attempts they make before they get the code.

Project 3 - D.O.T.lite

The traffic lights are wearing out by U-Village and somebody better fix 'em fast! At the corner of Pend Oreille and 25th Ave (NorthEast corner of campus) there's a 4-way intersection. You'll need to be able to handle traffic on both 25th and Pend Orielle, including the turn lane for 25th. BTW, just in case you thought it was too easy, the turn lights on 25th are different in the two directions, and activated by a sensor in the road.

Note that your Professor drives through that intersection daily, so no 4-way greens!


Related Discussions:- de1 board

Determine the flux, Q. Consider themagnetic circuit of Figure. Let the cros...

Q. Consider themagnetic circuit of Figure. Let the cross-sectional area AC of the core, be 16 cm 2 , the average length of the magnetic path in the core lC be 40 cm, the number

Analysis of aspects of design for excellence, We commissioned a 'bad practi...

We commissioned a 'bad practice exemplar' by asking Plexus to modify a good design (provided by Valor) to demonstrate the most likely kinds of faults in each of the areas Design fo

Pre-processing requirements - cpld design project , The pre-processing unit...

The pre-processing unit is responsible for taking the conditioned output from the heart sensor and generating a binary count during time T1 of this waveform (datain). It will compr

Determine the bounds on the carrier frequency, Suppose that a video signal,...

Suppose that a video signal, having W = 5 MHz, is transmitted via FM with f = 20 MHz. For 1/100 ≤ B/fc ≤ 1/10, determine the bounds on the carrier frequency. Use WFM ∼ = 2( ω + 2W

Principles for implementation of strategy in organization, Principles for I...

Principles for Implementation of Strategy in an Organization Organization required focusing on five principles for the successful implementation of strategy. Organizations wil

Impact of diversity, Both GSM and DECT use GMSK, but with different Gaussia...

Both GSM and DECT use GMSK, but with different Gaussian filters (BGT = 0.3 in GSM, BGT = 0.5 in DECT). What are the advantages of having a larger bandwidth time product? Why is the

Switching characteristics, Switching Characteristics The switching  cha...

Switching Characteristics The switching  characteristic  of an IGBT  during  turn on and turn off time all  shown  in the sum of delay time  and rise time gives  the total  tur

Derive an expression for the electric force, Q. A two-winding system has it...

Q. A two-winding system has its inductances given by where k 1 and k 2 are constants. Neglecting the winding resistances, derive an expression for the electric force when

Description of clauses used in a parallel construct, Q. Description of clau...

Q. Description of clauses used in a parallel construct? When a thread comes across a parallel construct a set of new threads is made to execute parallel region. Inside the para

Waveguides, Why are waveguides not used at low frequencies?

Why are waveguides not used at low frequencies?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd