Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Question: A cyclotron (Fig.) is an apparatus for accelerating charged particles to very high kinetic energies. Rapidly moving charged particles are coaxed into circular orbits by a strong uniform magnetic field that points in a direction perpendicular to the plane of the particles' orbit. During each lap around the cyclotron, the particle is accelerated (twice) by an electric field, boosting its energy and also increasing the radius of its orbit. The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University is a world leader in the study of rare isotopes and fundamental nuclear physics. The K500 cyclotron at NSCL has a diameter of 3 m and a maximum magnetic field strength of 5T. You can learn more (including the answers to this problem) at An Introduction to the K500 Cyclotron
a. Singly charged argon (m = 40 u) ions are accelerated within the K500 cyclotron. What is the maximum speed to which they can be accelerated? (Express this as a fraction of the speed of light c.)
b. Prove that the time needed for an Ar+ ion to make a full circle within the cyclotron is independent of its velocity. (Thisis true as long as v
c. Calculate this time. Note that the electric field accelerating the charges must flip its polarity twice in this time.
Fig. - A diagram of a small part of the spiral path of particles accelerating inside a cyclotron where the magnetic field B is prependicular to and out of the plane of the page. Accleration occurs at the gap between the Dees.
A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.
A resistor is in the shape of a cube, with each side of resistance R . Find the equivalent resistance between any two of its adjacent corners.
Question: Field and force with three charges? What is the electric field at the location of Q1, due to Q 2 ?
What is the maximum displacement of the bridge deck?
What is the magnitude of the current in the wire as a function of time?
Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.
Illustrate the cause of the components accelerating from rest down the conveyor.
Calculate the dc voltage applied to the circuit.
Quadrupole moments in the shell model
Determine the tension in each string
Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.
Evaluate maximum altitude?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd