Crashes caused by wheels coming off of vehicles

Assignment Help Physics
Reference no: EM131501981

Root Causes:

Read the following case study is about wheel system failures. Crashes caused by wheels coming off of vehicles are commonly referred to as wheel runoff crashes.

Wheel System Failures

Wheel system failures are primarily caused by the improper installation of a wheel that causes it to be loose or become loose. Commonly, a loose wheel causes the wheels studs to break and the wheel and tire to separate from the vehicle. Many root causes lead to loose wheels, but most of them are associated with over-torquing or under-torquing the lug nuts.

A bolted joint, such as a wheel mounting system, works by tightly clamping two surfaces together. The friction of the two mated surfaces and the force created from clamping them together with bolts (Clamp Load) allows the surfaces to resist movement. The amount of friction and Clamp Load determines the level of resistance the joint has to movement.

Clamp Load is created by tightening the bolts against the mated surfaces and is normally measured in foot pounds of torque with a torque wrench. If the bolt torque specified for a joint is applied, then the resultant Clamp Load should also be within specification. However, variations in the system such as rust or lubrication on the threads can affect the Clamp Load vs. torque relationship. Items in place between the mated surfaces can reduce the joint's friction and also alter the relationship between bolt torque and Clamp Load. This is called a Soft Joint.

Two concepts are important to understanding how a bolt works. They are Elastic Deformation and Yield Point. Elastic Deformation is metal's or, in this case, a bolt's ability to stretch and spring back to its original shape. Yield Point is where the bolt has been stretched past its elastic limit and can no longer spring back to its original shape. This stretching of a bolt and its pulling back creates Clamp Load. If, however, a bolt is over-torqued, and stretches past its Yield Point it can no longer maintain the Clamp Load.

Over-torquing is likely the most common wheel system failure due to the widespread use of impact wrenches to install wheels. Using an impact wrench to install wheels commonly causes the wheels to have 3 to 5 times the specified lug nut torque. The use of lubricants and anti-sizing compounds on the threads of the wheels studs or lug nuts can cause an even higher degree of over-torquing.

The specific torque required to install a wheel varies from vehicle to vehicle. Generally, the proper torque for the lug nuts on passenger vehicles will be around 100 foot-pounds and the proper torque for big trucks will be around 400 foot-pounds. Impact wrenches commonly used to install wheels on passenger vehicles are capable of producing 300 to 500 foot-pounds of torque. Impact wrenches used to install wheels on big trucks can produce 1200 to 2000 foot-pounds or torque.

Under-torquing is just simply not tightening the wheel lug nuts enough, causing the wheel to be loose. Under-torquing can be caused by corroded and damaged wheel system components. It can also be caused by using a cheap or worn-out impact wrench or by having a low air-pressure supply to an impact wrench.

Another common cause of wheel system failures is too much wheel paint thickness. As specified by the Recommended Practice PR222B from The Maintenance Council (T MC) of The American Trucking Association "Total thickness of the dried paint coating on each side of the wheel mounting face must not exceed 3 mils (.003 inch)." If the wheel's paint is too thick, then a soft joint is created and the system can fail.

Paint thickness defects are not only caused by original production painting but also more commonly caused by the recondition or "remanufacturing" of wheels. Wheel reconditioning generally involves "sandblasting" used truck wheels and repainting them to make them look new. The reconditioning of wheels is typically being done by tire dealers and tire retreaders who do little to control paint thickness.

Questions:

1. Study the above crash and draw an Ishikawa diagram to show the causes of wheel system failure.

2. Use root cause analysis to drill down to one root cause of wheel system failure.

Reference no: EM131501981

Questions Cloud

Financial statements confusing and initially intimidating : Share your thoughts on what can make financial statements confusing and initially intimidating to learn.
Explore the concept of a personal photographic vision : Explore the concept of a personal photographic vision.Explore several photographers and choose one to examine in more depth.
Differences between criminal and civil law : OJ Simpson was tried in criminal court in California for the 1994 murder of his ex-wife, Nicole Brown Simpson, and her friend Ronald Goldman.
What are advantages and disadvantages in using social media : What are the benefits and challenges of technology-based communication? What are the advantages and disadvantages in using social media in health care?
Crashes caused by wheels coming off of vehicles : Read the following case study is about wheel system failures. Crashes caused by wheels coming off of vehicles are commonly referred to as wheel runoff crashes.
Evaluate the economicimpact on the clients personal returns : Differentiate between accrual accounting and cash basis. Evaluate the economicimpact on the client's personal returns based on the recommended entity.
Party payers with healthcare organizations : What is the relationship between employers and third party payers with healthcare organizations?
What is the form of the work : Explain how the works of art fit into the context of the time period. Keep in mind that only art works that fit into the period of Middle Ages.
Gender and work-life balance : Fig Technologies wants industry research on gender and work-life attitudes to present an overview of the position of project managers in two geographic areas.

Reviews

Write a Review

Physics Questions & Answers

  Find the magnitude of the resulting magnetic field

A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.

  Find the equivalent resistance

A resistor is in the shape of a cube, with each side of resistance  R . Find the equivalent resistance between any two of its adjacent corners.

  What is the electric field at the location

Question: Field and force with three charges? What is the electric field at the location of Q1, due to  Q 2 ?

  What is the maximum displacement of the bridge deck

What is the maximum displacement of the bridge deck?

  What is the magnitude of the current in the wire

What is the magnitude of the current in the wire as a function of time?

  Blackbody

Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.

  Gravity conveyor

Illustrate the cause of the components accelerating from rest down the conveyor.

  Calculate the dc voltage

Calculate the dc voltage applied to the circuit.

  Quadrupole moments in the shell model

Quadrupole moments in the shell model

  Determine the tension in each string

Determine the tension in each string

  Introductory mechanics: dynamics

Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.

  Evaluate maximum altitude

Evaluate maximum altitude?

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd