Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The motion detector we used in class measures distance to the nearest object by using a speaker and a microphone. The speaker clicks 30 times a second. The microphone detects the sound bouncing back from the nearest object in front of it. The computer calculates the time delay between the making of the sound and receiving the echo. It knows the speed of sound (about 343 m/s at room temperature) and from that, it can calculate the distance to the object from the time delay.
If the nearest object in front of the detector is too far away, the echo will not get back before a second click is emitted. Once that happens, the computer has no way of knowing that the echo isn't an echo from the second click and the detector doesn't give correct results anymore. How far away does the object have to be before that happens? (Give your answer to three significant figures.) Explain your answer.
The speed of sound changes a little bit with temperature. Let's try to get an idea of how important this is. At room temperature (72°F) the speed of sound is about 343 m/s. At 62°F it is about 1% smaller. Suppose we are measuring an object that is really 1.5 meters away at 72°F. What is the time delay Δt that the computer detects before the echo returns? Explain your answer.
Now suppose the temperature is 62°F. If the computer detects a time delay of Δt but (because it doesn't know the temperature) calculates the distance using the speed of sound appropriate for 72°F, how far away would the computer report the object is? (Give your answer to 3 significant figures.) Explain your answer.
A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.
A resistor is in the shape of a cube, with each side of resistance R . Find the equivalent resistance between any two of its adjacent corners.
Question: Field and force with three charges? What is the electric field at the location of Q1, due to Q 2 ?
What is the maximum displacement of the bridge deck?
What is the magnitude of the current in the wire as a function of time?
Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.
Illustrate the cause of the components accelerating from rest down the conveyor.
Calculate the dc voltage applied to the circuit.
Quadrupole moments in the shell model
Determine the tension in each string
Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.
Evaluate maximum altitude?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd