Baseline validationdetermine the natural frequencies of the

Assignment Help Mechanical Engineering
Reference no: EM13370928

Baseline Validation

Determine the natural frequencies of the system. For the baseline system I get natural frequencies at the following engine speeds: 435, 2026, 2818, 5225, 7093, 10245, and 12153 rpm.

276_Steady State Analysis.png

Design Modification

Notice that the baseline design has a large amplitude response when the engine speed is around 435 or 2026 rpm. As these are very common operating speeds (idle and cruise), you would like to alter the baseline design to move these resonances as far away from their current values as possible. Due to other constraints in the system you are limited in the alterations you can make.

The modulus of the belt can be altered by as much as 10% higher and lower. Use MATLAB (or whatever software you would like) to plot the lowest two engine speeds that excite resonance as a function of belt modulus for the full range of modulus values. The tensioner spring constant can also be changed by as much as 10% higher and lower. Plot the lowest two engine speeds that excite resonance as a function of tensioner spring constant for the full range of values.

The geometry of the system can also be altered within some bounds. As illustrated in the figure, you can change the position and radius of each except the crankshaft pulley so that it fits in a square box centered at the original pulley position. The sides of the box are two centimeters larger than the pulley diameter. Thus, for example, the water pump pulley must fit in a box with center at (0, 167.5) mm and sides 155 mm. The radii of the pulleys cannot be reduced by more than 1 cm from the baseline design. As you change a pulley radius, you should consider changing the inertia of that pulley. However, all but the tensioner and idler pulleys are connected to devices with inertias much larger than the pulley. Thus, you should only alter the tensioner and idler inertias when you change their radii.

The possible design space is very large. To get a feel for how system changes alter the natural frequencies you can make plots as you change only a couple parameters at a time. Keeping the baseline pulley locations plot the engine speed of the lowest two resonances as a function of each pulley radius. Keeping the baseline radii, for all but the crankshaft pulley, plot the engine speed of the first two resonances as a function of x and y positions.

Include all plots in a report that includes physical arguments to explain all your results. Convince me that your results are correct.

You should now have a good understanding of how changing individual system parameters alters the natural frequencies of the system. Try to find a design that changes the first two natural frequencies more than any of the previous slight modifications. You will need to construct some benchmarking (objective) function that measures the improvement.

Once you have chosen a final design, you should draw it to scale using whatever drawing program you like. Include this as well as all the specifications of your final design in your report.

Steady State Analysis

A more thorough analysis of your final design must be done. In this analysis, you add a tensioner damper in parallel with the tensioner spring to your model. What is the system damping matrix if the damper has constant 750 N-s/m? Remembering that the third engine harmonic is dominant, plot the steady state response amplitude of each pulley as a function of the engine speed for speeds ranging from 0 to 7000 rpm. How does the damping you added alter this plot? Scale your plots so that the resonance peaks do not mask the response at other frequencies.

Reference no: EM13370928

Questions Cloud

Jim is considering implementing a 401k program for its : jim is considering implementing a 401k program for its employees. the program plan will include the company matching at
The decisions made based on the emvs of different : the decisions made based on the emvs of different alternatives are considered rational - are there limitations or risks
In your opinion what was the most important piece of advice : in your opinion what was the most important piece of advice washington gave? howaccording to washington were americans
Soon after beginning the year-end audit work on oct 24th at : soon after beginning the year-end audit work on oct 24th at the wallenda company the auditor has the following
Baseline validationdetermine the natural frequencies of the : baseline validationdetermine the natural frequencies of the system. for the baseline system i get natural frequencies
You have been given an excel spreadsheet called eviews : you have been given an excel spreadsheet called eviews assessment dataset- fnm221. this consists of monthly
Bumper crop means cheap mangoesnathan dyer the west : bumper crop means cheap mangoesnathan dyer the west australian november 1 2011perth consumers are set for a mango boom
One area of leadership that fairly compelling in the case : one area of leadership that fairly compelling in the case study was how wiedeking took the dramatic step of moving his
Mirna gaymar vp of operations for rocky mountain county : mirna gaymar vp of operations for rocky mountain county bank has instructed the banks computer programmer to use a

Reviews

Write a Review

 

Mechanical Engineering Questions & Answers

  Level process control lab

Determination of the open-loop system

  A stationary radar operator determines that a ship is 19 km

a stationary radar operator determines that a ship is 19 km south of him. an hour later the same ship is 16 km

  Two previously undeformed cylindrical specimens of an alloy

two previously undeformed cylindrical specimens of an alloy are to be strain hardened by reducing their cross-sectional

  The horizontal motion of the plunger and shaft is arrested

the horizontal motion of the plunger and shaft is arrested by the resistance of the attached disk which moves through

  Design a container using differentiation

design a container using differentiation that has a volume of 2500 litres. it must use the minimum amount of material.

  Carrying a uniformy distributed load

The bending moment M at position x m from the end of a simply supported beam of lenght L m carrying a uniformy distributed load of w Kn m-1 is given by

  Will the launch come to rest before hitting the wharf

A launch approaches a wharf at a speed of 10.5 knots(=5.4m/s).The engine are put in the reverse when the launch is 10 m from the wharf, the retardation being 1.25m/s squared. will the launch come to rest before hitting the wharf.. If not, with wha..

  A large vessel had experienced an internal leak of a

a large vessel had experienced an internal leak of a coolant. it was friday and the work crew needed to get the vessel

  Investigating a dynamic movement in polar coordinates

Investigating A Dynamic Movement in Polar Coordinates

  Calculate the power output in kw

Air enters a turbine at 40 kN/m2, 900 C, and leaves at 10 kN/m2. The flow is reversible and adiabatic. Inlet velocity is quite low and outlet velocity is 150 m/s through a cross-sectional area of 0.20 m2. Calculate the power output in kW.

  Define steam is cooled at constant pressure until one-half

A piston-cylinder device contains 0.8kg of steam at 300 degrees C and 1 MPa. Steam is cooled at constant pressure until one-half of the mass condenses.

  Determine distribution of shear force and bending moment

Determine distribution of shear force and bending moment

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd