Word problems based on formulation of linear programming, Operation Research

Word problems based on formulation of linear programming problems.

2.   A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour of work on machine 1 and 3 hours of work on machine 2 to produce a package of nuts. It takes 3 hours on machine 1 and 1 hour on machine 2 to produce a package of bolts. He earns a profit of Rs. 2.50 per package on nuts and Rs. 1 per package on bolts. Form a LPP to maximize his profit, if he operates each machine for almost 12 hours.

script

solution

Let x packages of nuts and y packages of bolts be produced. The objective of the manufacturer to maximize the profit is

Total Time required on machine 1 to produce x packages of nuts and y packages of bolts is equal to

 

Total Time required on the machine 2 to produce x packages of nuts and y packages of bolts is equal to

 s

According to restrictions,

For machine 1

For machine 2

 

Maximize z is equal to

 

Subject to constraints

 

 

To solve this graphically, let us take

The lines are drawn using suitable points on the graph.

The lines intersect at P(3,3)

Now shade the region of intersection of the lines.

The feasible region is OAPB

For the corner point O(0,0), z=

For the corner point A(4,0)

For the corner point P(3,3,)

For the corner point B(0,4)

Clearly z is maximum at x=3 , y=3 and the maximum value is 10.50

 

 

 

 

2.50x + 1y

 

 

1x + 3y

 

 

3x + 1y

 

 

 

 

 

X + 3y ≤ 12

3x + y ≤ 12 and x,y≥0

 

2.50x + y

 

X + 3y ≤ 12

3x + y ≤ 12

X ≥ 0, y ≥ 0

X + 3y =12

3x + y = 12, x=0, y=0

 

 

 

 

 

O(0,0),A(4,0),P(3,3,),B(0,4)

2.5(0) +1(0)=0

2.5(4)+1(0)=10

2.5(3)+1(3)=10.5

2.5(0)+1(4)=4

3.   A shopkeeper deals in 2 items → wall hangings and artificial plants. He had a space to store 80 pieces and Rs. 15000 to invest. A wall hangings cost him Rs. 300 and artificial plant Rs. 150. He can sell a wall hanging at a profit of Rs. 50 and artificial plant at a profit of Rs. 18. Assuming that he can sell all the items that he buys, formulate a LPP in order to maximize his profit.\

script

solution

Let x be the number of wall hangings and y be the number of artificial plants.

Profit of dealer is equal to

Objective function z is equal to

Since dealer invest atmost Rs. 15000

Therefore

Or

Also a dealer has space to store atmost 80 pieces.

Therefore,

 

Maximize z is equal to

Subject to constraints

 

 

 

To solve this graphically, we need to draw the graph

Let us the draw the lines 2x + y ≤100

X + y ≤ 80

X ≥ 0, y ≥ 0

On the graph by using suitable points.

The points of intersection are

Then shade the region of intersection of these two lines

The feasible points are OABC

Now to obtain the maximum value;

For The corner point O(0,0), z=

For the corner point A(50,0)

For the corner point B(20,60)

For the corner point C(0,100)

Clearly we get the maximum value of 2500 at A.(50,0)

 

 

 

50x + 18y

50x + 18y

 

 

300x + 150y ≤ 15000

2x + y ≤ 100

 

 

X + y ≤ 80

X ≥ 0, y ≥ 0

Z = 50x + 18y

2x + y ≤100

X + y ≤ 80

X ≥ 0, y ≥ 0

 

 

 

 

 

 

 

 

 

(20,60)

 

 

O(0,0),A(50,0),B(20,60),(C(0,100)

 

 

 

50(0)+18(0)=0

 

50(50)+18(0)=2500

50(20)+18(60)=2080

50(0)+18(100)=1800

Posted Date: 7/23/2012 4:15:31 AM | Location : United States







Related Discussions:- Word problems based on formulation of linear programming, Assignment Help, Ask Question on Word problems based on formulation of linear programming, Get Answer, Expert's Help, Word problems based on formulation of linear programming Discussions

Write discussion on Word problems based on formulation of linear programming
Your posts are moderated
Related Questions
These models deal with the selection of an optimal course of action given the possible pay offs and their associated probability of occurrence. These models are broadly

The Best Corporation is considering making either minor or major repairs to a malfunctioning production process.  When the process is malfunctioning, the percentage of defective it

a c++ program to implement assignment problem???????????


Normal 0 false false false EN-IN X-NONE X-NONE

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

These models are used when one must decide the optimal time to replace equipment for one reason or the other for instance, in the case of equipment whose efficiency dete

Case Study  - Attitude Measurement National Kitchens For  several years  the management  of national kitchens a diversified packaged foods manufacturer  had been  watch

job- 1 2 3 4 5 6 7 t1- 3 12 15 6 10 11 9 t2- 8 10 10 6 12 1 3

Scope of operation research?