Three particle system, Mechanical Engineering

Assignment Help:

Three Particle System

Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.


Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by,

742_download.png 

Note that the two forces act independently of each other along respective radial directions. That is, for example, we have
938_download (1).png 

Note that the two forces act independently of each other along respective radial directions. That is, for example, we have
595_download (2).png 

where and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get

2129_download (3).png 

For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,

U = U12 + ( -W3 )

156_download (5).png 

Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.

Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).

If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P.

2150_download (6).png 

where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].

Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass).

1146_download (7).png 

where r1 and r2 denote distances of P from m1 and m2.


Related Discussions:- Three particle system

Molding process, why compression molding process is impractable for thermop...

why compression molding process is impractable for thermoplastics?

Illustrate the term directional solidification, Describe some special kind ...

Describe some special kind of patterns and indicate the production circumstances in which each would be need. Illustrate the term Directional solidification as applied in castin

Explain ash handling system, Illustrate the following : a. Ash handling ...

Illustrate the following : a. Ash handling system b. Dust collection What are the impurities in the water and how they are replaced for use as feed water in modern thermal

Disc clutch friction warpage-clutch jerking, Disc clutch friction warpage: ...

Disc clutch friction warpage: Place the disc clutch friction on the surface plate and check for warpage.

Driveshaft seals, DRIVESHAFT SEALS Packed gland Sealed by several lay...

DRIVESHAFT SEALS Packed gland Sealed by several layers of asbestos or cotton yarn     Sometimes used two boxes with intervening space separated by steam Problems:     T

Gyroscope, what is principle of gyroscope

what is principle of gyroscope

Noise attenuation in ventilating, Indicate size, capacity and noise reducin...

Indicate size, capacity and noise reducing characteristics of all silencers on plans, including silencers for vane-axial fans. Indicate all acoustical lining on drawings, genera

Motion of two bodies - smooth surface and smooth pulley, Motion of two bodi...

Motion of two bodies - Smooth surface and smooth pulley: THE HORIZONTAL SURFACE IS SMOOTH AND STRING IS PASSING OVER SMOOTH PULLEY: Figure shows two weights W 1 and W 2 c

Calculate the natural frequency of the system, (a) A mass of 1 kg is to be ...

(a) A mass of 1 kg is to be supported on a spring having a stiffness of 9800N/m. The damping coefficient is 5.9 N-sec/m. Calculate the natural frequency of the system. Determine al

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd