Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Compute standard and variance deviation, A firm is manufacturing 45,000 uni...

A firm is manufacturing 45,000 units of nuts. The probability of having a defective nut is 0.15 Compute the given i. The expected no. of defective nuts ii. The standard an

Complex numbers, express the complex number z=5+i divide 2+3i in the form ...

express the complex number z=5+i divide 2+3i in the form a+ib

Theory of indices, In algebra knowing that 2 3 = 8 is not sufficient...

In algebra knowing that 2 3 = 8 is not sufficient. Equally important to know is what would be the result if quantities like 2 3 . 2 -4 . 2 6 or  3 7 / 3 2

Reduction-types of word problems related to subtraction, Reduction -when t...

Reduction -when the original amount and the balance or remainder are known, to find the part that has been given away. (e.g., there were 15 toffees in a container, and there are

Sum of a number of terms in a.p., We know that the terms in an ...

We know that the terms in an A.P. are given by a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d The sum of all t

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Adding integers, Do you subtract when you add integers.

Do you subtract when you add integers.

Which of the subsequent represents the cost y of phone call, A telephone co...

A telephone company charges $.35 for the first minute of a phone call and $.15 for each additional minute of the call. Which of the subsequent represents the cost y of a phone call

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd