Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Introduction to the normal distribution, Q. Introduction to the Normal Dist...

Q. Introduction to the Normal Distribution? Ans. The Binomial distribution is a model for what might happen in the future for a discrete random variable. The Normal Distri

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Exercise of concrete operational stage, Which of the following statements d...

Which of the following statements do you think are true about children? Indicate with 'T' for true and for false. Give reasons for your choice. a) Most primary school children a

Decision tree analysis, DECISION TREE ANALYSIS The Finance Manager of ‘...

DECISION TREE ANALYSIS The Finance Manager of ‘Softy’ baby soap manufacturing company being successful in the first two years of the company’s operations is considering to set

Algebra function., problem to understand an problem; f(X-2)=X+3 / X-4

problem to understand an problem; f(X-2)=X+3 / X-4

Determine the equation of the line, Example :  Determine the equation of th...

Example :  Determine the equation of the line which passes through the point (8, 2) and is, parallel to the line given by 10 y+ 3x = -2 Solution In both of parts we are goi

Evaluate the limit, Evaluate the given limit. Solution : It is a ...

Evaluate the given limit. Solution : It is a combination of many of the functions listed above and none of the limited are violated so all we have to do is plug in x = 3

Rationalize the denominator, Rationalize the denominator for following.  Su...

Rationalize the denominator for following.  Suppose that x is positive. Solution We'll have to start this one off along with first using the third property of radica

Order of a differential equation, The order of a differential equation is t...

The order of a differential equation is the huge derivative there in the differential equation. Under the differential equations as listed above in equation (3) is a first order di

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd