Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Phase plane, Before proceeding along with in fact solving systems of differ...

Before proceeding along with in fact solving systems of differential equations there's one topic which we require to take a look at. It is a topic that's not at all times taught in

Trig/cosine/sine rule etc, #questiThe elevation of a telecommunication mast...

#questiThe elevation of a telecommunication mast from two points, one due North of the tower and the other South of it are 21.2 degrees and 24.3 degrees respectively, and the two p

Example of multiplication of matrix, Given So calculate AB. Sol...

Given So calculate AB. Solution The new matrix will contain size 2 x 4. The entry in row 1 and column 1 of the new matrix will be determined by multiplying row 1 of

Eigenvalues and eigenvectors, Review: Systems of Equations - The tradition...

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations. Review: Matr

Harmonic mean-arthmetic geometric progression, Harmonic mean It is a m...

Harmonic mean It is a measure of central tendency which is utilized to determine the average increase rates for natural economies. This is defined like the reciprocal of the a

#title., Julia must do a 70:30 split of all of her profits with the Departm...

Julia must do a 70:30 split of all of her profits with the Department of Athletics. Julia also has the ability to sell soft drinks. If she decide to sell soft drinks, she must agre

Operation research, difference between scope and application of operation r...

difference between scope and application of operation research

Making connections with maths, MAKING CONNECTIONS :  you have read about w...

MAKING CONNECTIONS :  you have read about what the ability to think mathematically involves. In this section we shall discuss ways of developing this ability in children. As yo

Example of exponential smoothing, Example of Exponential Smoothing ...

Example of Exponential Smoothing By using the previous example and smoothing constant 0.3 generate monthly forecasts Months Sales Forecast

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd