Tangent lines, Mathematics

Assignment Help:

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the velocity occurs to be 30 m/s the slope of the tangent line to the graph of the velocity is 3.92.

We could carry on in this fashion and pick various values of v and calculate the slope of the tangent line for such values of the velocity. Although, let's take a slightly additionally organized approach to that. Let's first identify the values of the velocity which will have zero slope or horizontal tangent lines. These are easy adequate to determine. All we require to do is set the derivative equivalent to zero and resolve for v.

In the case of our illustration we will have only one value of the velocity that will have horizontal tangent lines, v = 50 m/s. What it means is that IF (again, there's that word if), for several time t, the velocity occurs to be 50 m/s after that the tangent line at that point will be horizontal. What the slope of the tangent line is at times before and after this point is not identified yet and has no bearing on the slope at this exact time, t.

Thus, if we have v = 50, we identify that the tangent lines will be horizontal. We indicate this on an axis system along with horizontal arrows pointing toward increasing t at the level of v = 50 as demonstrated in the subsequent figure.

182_tangent lines.png

Here, let's find some tangent lines and thus arrows for our graph for some another value of v. At that point the only precise slope that is helpful to us is where the slope horizontal. Consequently instead of going after exact slopes for the rest of the graph we are only aimed at go after general trends in the slope. Is the slope decreasing or increasing? How quick is the slope decreasing or increasing? For this illustration those kinds of trends are extremely easy to find.


Related Discussions:- Tangent lines

the bug should start to move in order to increase, The temperature at the ...

The temperature at the point (x, y) on a metal plate is given by the function f(x, y) = x 3 + 4xy + y 2 where f is in degrees Fahrenheit and x and y are in inches, with the origin

Example of circles - common polar coordinate graphs, Example of Circles - C...

Example of Circles - Common Polar Coordinate Graphs Example: Graph r = 7, r = 4 cos θ, and r = -7 sin θ on similar axis system. Solution The very first one is a circle

Calculate the throughput and link utilization, 4. Two hosts, one on East (h...

4. Two hosts, one on East (host A) and one on the west coast (host B) of the USA are exchanging data. Suppose A is sending a large file to B. The file is split into packets of size

Shares and dividend, A man invests rs.10400 in 6%shares at rs.104 and rs.11...

A man invests rs.10400 in 6%shares at rs.104 and rs.11440 in 10.4% shares at rs.143.How much income would he get in all??

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

Find the lesser of two consecutive positive even integers, Find the lesser ...

Find the lesser of two consecutive positive even integers whose product is 168. Let x = the lesser even integer and let x + 2 = the greater even integer. Because product is a k

Mode, how to work out mode

how to work out mode

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd