Tangent lines, Mathematics

Assignment Help:

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the velocity occurs to be 30 m/s the slope of the tangent line to the graph of the velocity is 3.92.

We could carry on in this fashion and pick various values of v and calculate the slope of the tangent line for such values of the velocity. Although, let's take a slightly additionally organized approach to that. Let's first identify the values of the velocity which will have zero slope or horizontal tangent lines. These are easy adequate to determine. All we require to do is set the derivative equivalent to zero and resolve for v.

In the case of our illustration we will have only one value of the velocity that will have horizontal tangent lines, v = 50 m/s. What it means is that IF (again, there's that word if), for several time t, the velocity occurs to be 50 m/s after that the tangent line at that point will be horizontal. What the slope of the tangent line is at times before and after this point is not identified yet and has no bearing on the slope at this exact time, t.

Thus, if we have v = 50, we identify that the tangent lines will be horizontal. We indicate this on an axis system along with horizontal arrows pointing toward increasing t at the level of v = 50 as demonstrated in the subsequent figure.

182_tangent lines.png

Here, let's find some tangent lines and thus arrows for our graph for some another value of v. At that point the only precise slope that is helpful to us is where the slope horizontal. Consequently instead of going after exact slopes for the rest of the graph we are only aimed at go after general trends in the slope. Is the slope decreasing or increasing? How quick is the slope decreasing or increasing? For this illustration those kinds of trends are extremely easy to find.


Related Discussions:- Tangent lines

Matrix, find the matrix of the linear transformations T:R2->R2 defined by T...

find the matrix of the linear transformations T:R2->R2 defined by T(x,y,z)=(x+2y,x-3z).

Ordinary and partial differential equations, A differential equation is ter...

A differential equation is termed as an ordinary differential equation, abbreviated through odes, if this has ordinary derivatives in it. Similarly, a differential equation is term

Average, A boy covered half of distance at 20km/hr and rest at 40kmlhr. cal...

A boy covered half of distance at 20km/hr and rest at 40kmlhr. calculate his average speed.

Describe the basic concepts and terminology, Describe the Basic Concepts an...

Describe the Basic Concepts and Terminology? Somebody tells you that x = 5 and y = 3. "What does it all mean?!" you shout. Well here's a picture: This picture is what's

Math, what is the changen intemperature bewtween the highest and the lowest...

what is the changen intemperature bewtween the highest and the lowest temperture high-40c low-0c

Numerical analysis, Please,I Want to know and study for stability on predi...

Please,I Want to know and study for stability on predictor -corrector for numerical integration method

Find out function is increasing and decreasing, Find out where the followin...

Find out where the following function is increasing & decreasing. A (t ) = 27t 5 - 45t 4 -130t 3 + 150 Solution As with the first problem first we need to take the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd