Surface area with polar coordinates, Mathematics

Assignment Help:

Surface Area with Polar Coordinates

We will be searching for at surface area in polar coordinates in this part.  Note though that all we're going to do is illustrate the formulas for the surface area as most of these integrals tend to be quite difficult.

 We want to locate the surface area of the region found through rotating,

r = f (θ)

α < θ < β

about the x or y-axis.

Like we did in the tangent and arc length sections we will write the curve in terms of a set of parametric equations.

x= r cosθ

= f (θ) cos θ

y = r sin θ

= f (θ) sin θ

If we now make use of the parametric formula for finding the surface area we'll obtain,

S = ∫ 2Πy ds                             rotation about x-axis

S = ∫ 2Πx ds                             rotation about y-axis

Where

ds = √r2 + (dr/dθ)2

r = f (θ) , α < θ < β

Note: since we will pick up a  dθ  from the ds we'll require to substitute one of the parametric equations in for x or y depending upon the axis of rotation.  This will frequently mean that the integrals will be rather unpleasant.


Related Discussions:- Surface area with polar coordinates

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

Quadratic Functions, Can you please explain what Quadratic functions are?

Can you please explain what Quadratic functions are?

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient Sometimes numerical data such refers to the quantifiable variables may be described after which a rank correlation coefficient may

Inverse tangent, Inverse Tangent : Following is the definition of the inve...

Inverse Tangent : Following is the definition of the inverse tangent.  y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2 Again, we have a limi

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Find the third vertex of a triangle, Find the third vertex of a triangle if...

Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid point of one side is (0, 3).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd