Suffix substitution closure, Theory of Computation

Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators lets us do this by considering the characteristics of the tilings they build. Consider, for instance the situation in the top half of Figure 5, where there are two tilings u1σv1 and u2σv2 in which the symbol ‘σ' occurs. Clearly, after having built u1σ we had the choice of continuing with either v1 or with v2. We had the same choice after having built u2σ. Hence both of the tilings in the bottom half are constructable as well.

What this means for the strings, is that the question of whether we can extend a particular string to produce a longer string that is in the language depends only on the last symbol of that string.

Posted Date: 3/21/2013 6:09:41 AM | Location : United States







Related Discussions:- Suffix substitution closure, Assignment Help, Ask Question on Suffix substitution closure, Get Answer, Expert's Help, Suffix substitution closure Discussions

Write discussion on Suffix substitution closure
Your posts are moderated
Related Questions
Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Ask queyystion #Minimum 100 words accepted#

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .


design a tuning machine for penidrome

Exercise:  Give a construction that converts a strictly 2-local automaton for a language L into one that recognizes the language L r . Justify the correctness of your construction.

#can you solve a problem of palindrome using turing machine with explanation and diagrams?


For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that