Suffix substitution closure, Theory of Computation

Assignment Help:

Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators lets us do this by considering the characteristics of the tilings they build. Consider, for instance the situation in the top half of Figure 5, where there are two tilings u1σv1 and u2σv2 in which the symbol ‘σ' occurs. Clearly, after having built u1σ we had the choice of continuing with either v1 or with v2. We had the same choice after having built u2σ. Hence both of the tilings in the bottom half are constructable as well.

What this means for the strings, is that the question of whether we can extend a particular string to produce a longer string that is in the language depends only on the last symbol of that string.


Related Discussions:- Suffix substitution closure

Chomsky-schutzenberger, The upper string r ∈ Q+ is the sequence of states v...

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Concatenation, We saw earlier that LT is not closed under concatenation. If...

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Alphabets - strings and representation, A finite, nonempty ordered set will...

A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd