Substitution technique of linear equations - linear algebra, Mathematics

Assignment Help:

What is Substitution Technique of Linear Equations?


Related Discussions:- Substitution technique of linear equations - linear algebra

Expected value, Expected Value For taking decisions under conditions of...

Expected Value For taking decisions under conditions of uncertainty, the concept of expected value of a random variable is used. The expected value is the mean of a probability

Permutation, Permutation - It is an order arrangement of items whether...

Permutation - It is an order arrangement of items whether the order must be strictly observed Illustration Assume x, y and z be any of three items. Arrange these in all

Integration, why we study integration..?? uses

why we study integration..?? uses

Construct a venn diagram, In a survey of 85 people this is found that 31 wa...

In a survey of 85 people this is found that 31 want to drink milk 43 like coffee and 39 wish tea.  As well 13 want both milk and tea, 15 like milk & coffee, 20 like tea and coffee

100 day countdown, subtract 20and 10,and then mutiply by 5

subtract 20and 10,and then mutiply by 5

Indices, 16 raised to the power x eqaual to x raised to the power 2. find x...

16 raised to the power x eqaual to x raised to the power 2. find x

Determine the distance, Two planes leave the airport at the similar time. M...

Two planes leave the airport at the similar time. Minutes later, plane A is 70 miles due north of the airport and plane B is 168 miles due east of the airport. Determine the distan

Inequalality, the low temperature in onw city was -4degrees Fahrenheit. The...

the low temperature in onw city was -4degrees Fahrenheit. The low temperature in another city was 8degrees Fahrenheit. what is an inequality to compare those temperatures

james

2/12/2013 3:09:01 AM

To demonstrate Substitution technique, consider the system of two equations (i). and (ii) reproduced underneath as:

            2x - 3y = 8 ........          (i).

            3x + 4y = -5 ......           (ii).

The solution of such system can be acquired by

1) Solving one of the equations for one variable in terms of other variable;

2) Substituting this value into the another equation(s) thereby getting an equation along with one unknown only

3) at last Solving this equation for its single variable

4) Substituting this value into any one of the two original equations as like to receive the value of the second variable

Step 1

Solve equation (i) for variable x in terms of y

2x - 3y = 8

x= 4 + (3/2) y   (iii)

Step 2

Substitute this value of x into equation (ii). And get an equation in y only

3x + 4y = -5

3 (4 + (3/2) y) + 4y = -5

8 ½ y = - 17 .......          (iv)

Step 3

Solve the equation (iv). For y

8½y = -17

y = -2

Step 4

Substitute this value of y into equation (i) or (iii) and get the value of x

2x - 3y = 8

2x - 3(-2) = 8

x = 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd