Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Definition of higher order derivatives, Higher Order Derivatives : Le...

Higher Order Derivatives : Let's begin this section with the given function.                            f ( x ) = 5x 3 - 3x 2 + 10 x - 5 By this point we have to be a

Metric space, Assume that (X, d) is a metric space and let (x1, : : : , x n...

Assume that (X, d) is a metric space and let (x1, : : : , x n ) be a nite set of pointsof X. Elustrate , using only the de nition of open, that the set X\(x1, : : : , x n ) obtain

Permutation, HOW MANY number laying between 100 and 1000 can be formed with...

HOW MANY number laying between 100 and 1000 can be formed with 0,1,2,3,4,5 and also divisible by 5 with distinct digit

Calculate the profit the bank earn each treasury bond, Financial institutio...

Financial institutions often create synthetic instruments out of existing instruments.  In this case an investment bank plans to buy Treasury Bonds with 20-year maturities at their

Area, area of r=asin3x

area of r=asin3x

Powerball odds., I need to know how to get the power ball odds. the first o...

I need to know how to get the power ball odds. the first one 5 out of 59 plus 1 out of 35 I got .I did combination formula and it came out right. how do you get 5 out 0f 59 and get

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

Solid geometry, what is solid geometry and uses of solid geometry

what is solid geometry and uses of solid geometry

Seriation to developing pre-number concepts, Seriation :  You have read ab...

Seriation :  You have read about a preschooler's ability to order. Ordering a set of objects means to arrange them in a sequence according to some rule. This arrangement could be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd