Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Evaluate the volume of a ball, Evaluate the volume of a ball whose radius i...

Evaluate the volume of a ball whose radius is 4 inches? Round to the nearest inch. (π = 3.14) a. 201 in 3 b. 268 in 3 c. 804 in 3 d. 33 in 3 b. The volume of a

Differential equation.., 3.6Find the general solution of the differential e...

3.6Find the general solution of the differential equation Y" + 4y = Sec2 2x

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

Characteristics of exponential smoothing, Characteristics of Exponential Sm...

Characteristics of Exponential Smoothing 1. More weight is described to the most recent data. 2. All past data are incorporated not like in moving averages. 3. Les

The definition of the limit, The Definition of the Limit In this secti...

The Definition of the Limit In this section we will look at the precise, mathematical definition of three types of limits we'll be looking at the precise definition of limits

Calculus, I need an explanation of "the integral, from b to a, of the deriv...

I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.

How much time does larry spend on his dog each day, Larry spends 3/4 hour t...

Larry spends 3/4 hour twice a day walking and playing with his dog. He also spends 1/6 hour twice a day feeding his dog. How much time does Larry spend on his dog each day? Add

Area under curve, w/ You could use this sample code to test your C function...

w/ You could use this sample code to test your C functions // Please make appropriate changes to use this for C++. // Following main function contains 3 representative test cases

Integration, It is known that a radioactive material decays at a rate propo...

It is known that a radioactive material decays at a rate proportional to the amount present.If after a period of 12 years,a 2g piece of radium weighs 1.99g.How long will it be befo

Supply/demand, For the pair of supply-and-demand equations, where x represe...

For the pair of supply-and-demand equations, where x represents the quantity demanded in units of 1000 and p is the unit price in dollars, find the equilibrium quantity and the equ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd