Strictly 2 - local automata, Theory of Computation

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input alphabet. The automaton starts with the window positioned over the beginning of string marker and the first symbol of the word (if any). At each step, it looks up the pair of symbols in the window in a table of pairs of symbols. It halts when the end of string marker is in the window (if not sooner).

The S-R element is a set/reset latch. It holds the current output which is initially set to TRUE by driving the START input FALSE. (The inverting circle and vinculum over the signal name indicate an input that is activated when it is driven FALSE.) It is then is reset to FALSE if any pair of symbols in the window fails to match some pair in the lookup table (if output of the ‘∈' element ever goes FALSE). Once reset it remains FALSE. Since the output will be FALSE at the end of the string if it ever goes FALSE during the computation, we may just as well assume that the automaton halts when the first pair that is not in the lookup table is encountered.

Formally, all we need do to specify a particular instance of a strictly 2-local automaton is to give the alphabet and list the pairs of symbols in the internal table.

Posted Date: 3/21/2013 5:40:24 AM | Location : United States







Related Discussions:- Strictly 2 - local automata, Assignment Help, Ask Question on Strictly 2 - local automata, Get Answer, Expert's Help, Strictly 2 - local automata Discussions

Write discussion on Strictly 2 - local automata
Your posts are moderated
Related Questions
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis

The project 2 involves completing and modifying the C++ program that evaluates statements of an expression language contained in the Expression Interpreter that interprets fully pa


Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P