Solve the subsequent quadratic equation, Mathematics

Solve the subsequent quadratic equation:

Solve the subsequent quadratic equation through taking the square roots of both sides.

3x2 = 100 - x2

Solution:

Step 1. Using the addition axiom, add x2 to both sides of the equation.

3x2  + x2          = 100 - x2  + x2

4x2       = 100

Step 2. Using the division axiom, divide both sides of the equation through 4.

4x 2 /4 = 100/4

x2  = 25

Step 3. Take the square root of both sides of the equation.

 

x2         = 25

√x2       = √25

x          = ±5

Thus, the roots are x = +5 and x = -5.

Step 4. Check the roots.

3x2       = 100 - x2

3(±5)2  = 100 - (±5)2

3(25)    = 100 - 25

75        = 75

If a pure quadratic equation is written in common form, a general expression can be written for its roots.  The common form of a pure quadratic is the subsequent.

ax2 + c = 0                                                                 

Using the subtraction axiom and subtract c from both sides of the equation.

ax2 = -c

Using the division axiom and divide both sides of the equation by a.

x2  = - c/a

Now take the square roots of both sides of the equation.

256_Solve the subsequent quadratic equation.png                                                            

Therefore, the roots of a pure quadratic equation written in common form ax2 + c = 0 are 1884_Solve the subsequent quadratic equation1.png.

Posted Date: 2/9/2013 2:59:09 AM | Location : United States







Related Discussions:- Solve the subsequent quadratic equation, Assignment Help, Ask Question on Solve the subsequent quadratic equation, Get Answer, Expert's Help, Solve the subsequent quadratic equation Discussions

Write discussion on Solve the subsequent quadratic equation
Your posts are moderated
Related Questions
Reduction formulae Script for Introduction: First let us know what is meant by reduction formula. In simple words,                 A formula which expressess(or re

what are these all about and could i have some examples of them please

Solve the following pairs of simultaneous equations by elimination method i.2x+y=10 ii. 3x+y=6 3x-2y=1 5x+y=8 solve the following simult

Evaluate the area of the shaded region in terms of π. a. 8 - 4π b. 16 - 4π c. 16 - 2π d. 2π- 16 b. The area of the shaded region is same to the area of the squa

Example  Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:

types of brands

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true. f ′ (c ) = 0        OR             f ′ (c

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An


Solve sin (3t ) = 2 . Solution This example is designed to remind you of certain properties about sine and cosine.  Recall that -1 ≤ sin (θ ) ≤ 1 and -1 ≤ cos(θ ) ≤ 1 .  Th