Rules of integration, Mathematics

Assignment Help:

Rules of Integration

1. If 'k' is a constant then

∫Kdx

=  kx + c

2. In the above rule, if k = 1 then

∫dx  (this means integral of 1 which is written as dx and not 1 dx)

         = x + c

3. 

∫xndx = 52_rules of integration.png + c

*

- 1

The integral of 1/x or x-1 is

∫x1. dx =  ln x + c  x > 0

 

         The condition x > 0 is added because only positive numbers have logarithms.

4. 

∫akxdx =   1403_rules of integration1.png

+ c where 'a' and 'k' are constants.

 

5. 

∫eKxdx = 2443_rules of integration2.png + c since ln e = 1

2317_rules of integration3.png

Functions which differ from each other only by a constant have the same derivative. For example, the function F(x) = 4x + k has the same derivative, F'(x)= 4 = f(x), say, for any infinite number of possible values for k. If the process is reversed, it is clear that  ∫4dx is the indefinite integral for an infinite number of functions differing from each other only by a constant. The constant of integration, mentioned 'c' in the expression for integration earlier, thus represents the value of any constant which was part of the original function but precluded from the derivative by the rules of differentiation.

The graph of an indefinite integral ∫f(x)dx = F(x) + c, where 'c' is unspecified, is a family of curves parallel in the sense that the slope of the tangent to any of them at x is f(x). Specifying 'c' gives a single curve whereas changing 'c' shifts the curve vertically. If c = 0, the curve begins at the origin.

For example,  ∫4d(x)  = 4x + c. For c = -7, -3, 0, 1 and 4 the graph of this integral is given below.

Figure 

1868_rules of integration4.png

Related Discussions:- Rules of integration

Area with parametric equations - polar coordinates, Area with Parametric Eq...

Area with Parametric Equations In this section we will find out a formula for ascertaining the area under a parametric curve specified by the parametric equations, x = f (t)

Pre Calculus 12, A radioactive substance decays to 30% of its original mass...

A radioactive substance decays to 30% of its original mass in 15 months. Determine the half-life of this radioactive substance to the nearest month

Probability, A man is known to speak truth 3 out of 4 times.He throws adi...

A man is known to speak truth 3 out of 4 times.He throws adie and reports it is a six. Find the probability that it is actually a six. Solution)  we can get a six if a man s

Sum, As1212uestion #Minimum 100 words accepted#

As1212uestion #Minimum 100 words accepted#

Unit vector and zero vectors, Unit Vector and Zero Vectors Unit Vec...

Unit Vector and Zero Vectors Unit Vector Any vector along with magnitude of 1, that is || u → || = 1, is called a unit vector. Zero Vectors The vector w → = (

Quantitative Technique in Marketing, a company''s advertising expenditures ...

a company''s advertising expenditures average $5,000 per month. Current sales are $29,000 and the saturation sales level is estimated at $42,000. The sales-response constant is $2,

Example of division of fractions, Example of division of fractions: E...

Example of division of fractions: Example: (4/5)/(2/9) = Solution: Step 1:             Invert the divisor fraction (2/9) to (9/2). Step 2:             Multip

Example of addition of fractions, Example of addition of Fractions: 10...

Example of addition of Fractions: 105/64 + 15/32 + 1/6 =____ would require the denominator to be equal to 64 x 32 x 6 = 12,288. This type of number is very hard to use.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd