Quick sort, Data Structure & Algorithms

Assignment Help:

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of implementation, moderate use of resources & acceptable behavior for a variety of sorting cases. The fundamental of quick sort is the divide & conquer strategy that means Divide the problem [list to be sorted] into sub-problems [sub-lists], till solved sub problems [sorted sub-lists] are found. It is implemented as follows:

Select one item A[I] from the list A[ ].

Rearrange the list so that this item come to the appropriate position, that means all preceding items have a lesser value and all succeeding items contain a greater value than this item.

1.      Place A[0], A[1] .. A[I-1] in sublist 1

2.      A[I]

3.      Place A[I + 1], A[I + 2] ... A[N] in sublist 2

Repeat steps 1 and step 2 for sublist1 and sublist2 until A[ ] is a sorted list. As can be seen, this algorithm contains a recursive structure.

The divide' procedure is of utmost importance in this algorithm. Usually this is implemented as follows:

1.      Select A[I] as the dividing element.

2.         From the left end of the list (A[O] onwards) scan until an item A[R] is found whose value is greater than A[I].

3.         From the right end of list [A[N] backwards] scan until an item A[L] is found whose value is less than A[1].

4.      Swap A[R] & A[L].

5.      Continue steps 2, 3 & 4 till the scan pointers cross. End at this stage.

6.      At this point, sublist1 and sublist2 are ready.

7.      Now do the same for each of sublist1 & sublist2.


Related Discussions:- Quick sort

Define min-heap, Define min-heap A min-heap is a complete binary tree i...

Define min-heap A min-heap is a complete binary tree in which each element is less than or equal to its children. All the principal properties of heaps remain valid for min-hea

Program for linear search, Program for Linear Search. Program: Linear S...

Program for Linear Search. Program: Linear Search /*Program for Linear Search*/ /*Header Files*/ #include #include /*Global Variables*/ int search; int

Define the internal path length, Define the Internal Path Length The In...

Define the Internal Path Length The Internal Path Length I of an extended binary tree is explained as the sum of the lengths of the paths taken over all internal nodes- from th

Er diagram, Ask queConsider the following functional dependencies: Applican...

Ask queConsider the following functional dependencies: Applicant_ID -> Applicant_Name Applicant_ID -> Applicant_Address Position_ID -> Positoin_Title Position_ID -> Date_Position_O

Cache simulator, how to design a cache simulator with 4-way set associative...

how to design a cache simulator with 4-way set associative cache

Linked list implementation of a dequeue, Double ended queues are implemente...

Double ended queues are implemented along doubly linked lists. A doubly link list can traverse in both of the directions as it contain two pointers namely left pointers and righ

State warnock algorithm, Warnock's Algorithm An interesting approach to...

Warnock's Algorithm An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but

Inorder traversal, Inorder traversal: The left sub tree is visited, then t...

Inorder traversal: The left sub tree is visited, then the node and then right sub-tree. Algorithm for inorder traversal is following: traverse left sub-tree visit node

Find the complexity of an algorithm, Q.1 What is an algorithm? What are the...

Q.1 What is an algorithm? What are the characteristics of a good algorithm? Q.2 How do you find the complexity of an algorithm? What is the relation between the time and space c

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd