If secA= x+1/4x, prove that secA+tanA=2x or 1/2x.
Ans: Sec? = x + 1/4x
⇒ Sec^{2}? =( x + 1/4x)^{2 }(Sec^{2}?= 1 + Tan^{2}?)
Tan^{2}? = ( x + 1/4x)^{2}-1
Tan^{2}? = ( x - 1/4x)^{2}
Tan? = + x - 1/4x
Sec? + Tan? = x + 1/4x + x-1/4x
=2x or 1/2x