Propeller efficiency, Other Engineering

PROPELLER EFFICIENCY:

The propeller is 80 - 87% efficient up to approximately 400 mph.  Generally, beyond this performance will fall off, although new materials and improved blade technology are tending to increase efficiency.

This efficiency can be expressed as followed:

Propeller efficiency  =    Work done by propeller/work done by engine *  100

The drag on an aircraft travelling at 300ft/sec is 1100 lbs and if the engine produces 750 Shaft Horsepower the propeller efficiency is as follows:

Work          =  Force  *  Distance

Drag =  Thrust (in level flight)

Work Done by Propeller / Sec    =       Thrust *  Speed

                                                         =       1100  *  300 ft lbs

Work Done by Engine                           =       HP / Sec

                                                         =       750  *  550 ft lbs (1 HP)

Propeller Efficiency                      =   (1100*300)/(750*350) * 100  =  80%

Note that if the aircraft is stationary with engine running, thrust is produced, but as there is no forward movement, propeller efficiency is zero.  At high forward speeds the slip could be zero, i.e. no angle of attack, therefore no thrust.  With no thrust the propeller efficiency is zero.

When power is changed into thrust, the drag (or torque) created by the propeller limits engine speed.  To be efficient, obviously the propeller should absorb all the power available.  This is achieved by making a compromised design as power absorption creates limitations.

Propeller design with regard to diameter, number of blades and blade shape is governed by the power to be absorbed.  The tip speed must not approach the speed of sound or efficiency will be lost; this limits diameter.  Aircraft design also limits propeller design.  Low slung engines mounted close to the fuselage require small diameter propellers; larger propellers require a longer undercarriage.

  • Diameter
  • Blade Angle
  • Chord
  • Change of Angle of Attack
  • Camber of Aerofoil

In higher powered engines, a reduction gear is usually fitted.  This allows the engine to run at its most efficient speed while allowing the propeller to turn at its most efficient speed.

 

Posted Date: 9/14/2012 2:36:26 AM | Location : United States







Related Discussions:- Propeller efficiency, Assignment Help, Ask Question on Propeller efficiency, Get Answer, Expert's Help, Propeller efficiency Discussions

Write discussion on Propeller efficiency
Your posts are moderated
Related Questions

Small Business Management Case. Go to the page 215 Kelly Grill. Three questions need to be addressed based on Ch 7. Go to www.coursesmart.com sign in user name: Waleed122@windowsli

Real time processing is suitable when it is necesssary to have the latest information in the following types of business operations

dc load line for a diode & same for circuit consisting of supply voltage in series with resistance & diodes

2. Differentiate between stream oriented and data gram oriented socket in java?

What are the no-arbitrage lower bound, and the no-arbitrage upper bound, of the vertical spread

sir how can I find the transfer function of control valve

Casting means the pouring of molten metal into a mould, where solidification occurs. Advantages of Casting Process          (i) It is the cheapest method of fabrication.

Q.  Define the polymorphism. Ans. POLYMORPHISM: It is defined as the change in atomic structure which occurs at a definite transformation temperature. The cooling diagram of

Why spiral model is called meta model?