Proof integral function, Mathematics

Assignment Help:

Proof of: if f(x) > g(x) for a < x < b then ab  f(x) dx > g(x).

Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,

ab f(x) - g(x) dx > 0

We know as well from Property 4,

ab f(x) - g(x) dx = ab f(x) dx - ab g(x) dx

Therefore, we then get,

ab f(x) dx - ab g(x) dx > 0

ab f(x) dx > ab g(x) dx

Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ ab f(x) dx ≤ M (b - a).

 Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,

ab m dx < ab f(x) dx ≤ ab M dx

So by Property 7 on the left and right integral to find,

m(b -a) < ab f(x) dx ≤ M (b -a)


Related Discussions:- Proof integral function

1, what''s the beneit of study mathematics ?

what''s the beneit of study mathematics ?

Geometry, how do we rotate an object 90 counterclockwise?

how do we rotate an object 90 counterclockwise?

Computerised payroll package, How to calculate costs if you have a computer...

How to calculate costs if you have a computerised payroll package for your large business?

Project, report on shares and dovidend using newspaper

report on shares and dovidend using newspaper

What are the angles of depression from observing position, In Figure, what ...

In Figure, what are the angles of depression from the observing positions O 1 and O 2 of the object at A?

find the original number, A two-digit number is seven times the sum of its...

A two-digit number is seven times the sum of its digits.  The number formed by reversing the digits is 18 less than the  original number. Find the original number.

Theorem to computer the integral, Use green's theorem to computer the integ...

Use green's theorem to computer the integral F . dr where F = ( y^2 + x, y^2 + y) and c is bounded below the curve y= - cos(x),, above by y = sin(x) to the left by x=0 and to the r

Equal-sharing-categories of situations requiring division , Equal-sharing ...

Equal-sharing - situations in which we need to find out how much each portion Multiplication and Division contains when a given quantity is shared out into a number of equal porti

Formulas, how many formulas there for the (a-b)2

how many formulas there for the (a-b)2

Fundamental theorem of integral facts formulasproperties, Fundamental Theor...

Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd