Proof integral function, Mathematics

Assignment Help:

Proof of: if f(x) > g(x) for a < x < b then ab  f(x) dx > g(x).

Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,

ab f(x) - g(x) dx > 0

We know as well from Property 4,

ab f(x) - g(x) dx = ab f(x) dx - ab g(x) dx

Therefore, we then get,

ab f(x) dx - ab g(x) dx > 0

ab f(x) dx > ab g(x) dx

Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ ab f(x) dx ≤ M (b - a).

 Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,

ab m dx < ab f(x) dx ≤ ab M dx

So by Property 7 on the left and right integral to find,

m(b -a) < ab f(x) dx ≤ M (b -a)


Related Discussions:- Proof integral function

Example of negative number, Q. Example of negative number? If you take ...

Q. Example of negative number? If you take an elevator 8 stories  down , what would be the opposite of this? The opposite would be that you take the elevator 8 stories  up .

Three times the larger of the two numbers, If three times the larger of the...

If three times the larger of the two numbers is divided by the smaller, then the quotient is 4 and remainder is 5. If 6 times the smaller is divided by the larger, the quotient is

Division, Before taking up division of polynomials, let us acquaint...

Before taking up division of polynomials, let us acquaint ourselves with some basics. Suppose we are asked to divide 16 by 2. We know that on dividing 16 by

Design a diagram by transformation, On a graph, design a diagram by transfo...

On a graph, design a diagram by transformation the given graph of f (x), -2 ≤ x ≤ 2. Briefly Define the other graphs in terms of f (x) and specify their domains. The diagram n

Define a hamilton path, Define a Hamilton path. Determine if the following ...

Define a Hamilton path. Determine if the following graph has a Hamilton circuit. Ans: A path is known as a Hamiltonian path if it consists of every vertex of the graph e

Karatsubas algorithm, Consider the following two polynomials in F 17 [x] ...

Consider the following two polynomials in F 17 [x]   (a) Use Karatsuba's algorithm, by hand, to multiply these two polynomials. (b) Use the FFT algorithm, by hand, to

Integration, how to find area under a curve?

how to find area under a curve?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd