Proof integral function, Mathematics

Assignment Help:

Proof of: if f(x) > g(x) for a < x < b then ab  f(x) dx > g(x).

Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,

ab f(x) - g(x) dx > 0

We know as well from Property 4,

ab f(x) - g(x) dx = ab f(x) dx - ab g(x) dx

Therefore, we then get,

ab f(x) dx - ab g(x) dx > 0

ab f(x) dx > ab g(x) dx

Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ ab f(x) dx ≤ M (b - a).

 Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,

ab m dx < ab f(x) dx ≤ ab M dx

So by Property 7 on the left and right integral to find,

m(b -a) < ab f(x) dx ≤ M (b -a)


Related Discussions:- Proof integral function

What is the approximate cost of 1 binder and 1 pen, At the school bookstore...

At the school bookstore and two binders and three pens cost $12.50. Three binders and five pens cost $19.50. What is the approximate cost of 1 binder and 1 pen? Let x = the cos

how many of the original vectors, We have claimed that a randomly generate...

We have claimed that a randomly generated point lies on the equator of the sphere  independent of where we pick the North Pole.  To test this claim randomly generate ten  vectors i

Abels theorem, If y 1 (t) and y 2 (t) are two solutions to y′′ + p (t ) ...

If y 1 (t) and y 2 (t) are two solutions to y′′ + p (t ) y′ + q (t ) y = 0 So the Wronskian of the two solutions is, W(y 1 ,y 2 )(t) = =

Concept, uses of maths concept

uses of maths concept

Calculate the edges in an undirected graph, Calculate the edges in an undir...

Calculate the edges in an undirected graph along with two vertices of degree 7, four vertices of degree 5, and the remaining four vertices of degree are 6? Ans: Total degree of

Pi, is that rational or irrational number

is that rational or irrational number

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd