Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Array, how to define the size of array

how to define the size of array

Program for binary search, Illustrates the program for Binary Search. P...

Illustrates the program for Binary Search. Program: Binary Search /*Header Files*/ #include #include /*Functions*/ void binary_search(int array[ ], int value,

Algorithm to evaluate expression given in postfix notation , Q. Write down ...

Q. Write down an algorithm to evaluate an expression given to you in postfix notation. Show the execution of your algorithm for the following given expression. AB^CD-EF/GH+/+*

Hw7, Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Sp...

Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Spring 2013 R. I. Greenberg Computer Science Department Loyola University Water TowerCampus, Lewis Towers 524 82

Design a framework of a genetic algorithm, You have to design a framework o...

You have to design a framework of a Genetic Algorithm (GA) with basic functionality. The basic functionality includes representation, recombination operators, tness function and se

find shortest path from a to z using dijkstra''s algorithm., Q.  In the gi...

Q.  In the given figure find the shortest path from A to Z using Dijkstra's Algorithm.    Ans: 1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z} Let L(A)

Explain about the containers, Containers Introduction Simple abstr...

Containers Introduction Simple abstract data types are useful for manipulating simple sets of values, such as integers or real numbers however more complex abstract data t

Write down any four applications of queues, Write down any four application...

Write down any four applications of queues.            Application of Queue (i)  Queue is used in time sharing system in which programs with the similar priority form a queu

Abstract data type-tree, Definition: A set of data values & related operati...

Definition: A set of data values & related operations that are accurately specified independent of any particular implementation. As the data values and operations are described

Explain about the string abstract data type operations, Explain about the S...

Explain about the String Abstract data type operations Symbol ADT has no concatenation operations, but presuming we have a full-featured String ADT, symbols can be concatenated

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd