Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Efficient way of storing a sparse matrix in memory, Explain an efficient wa...

Explain an efficient way of storing a sparse matrix in memory.   A matrix in which number of zero entries are much higher than the number of non zero entries is called sparse mat

Recursion, differences between direct and indirect recursion

differences between direct and indirect recursion

Selection sort, how to reduce the number of passes in selection sort

how to reduce the number of passes in selection sort

What are stored and derived attributes, What are stored and derived attribu...

What are stored and derived attributes?  Stored attributes: The attributes kept in a data base are called stored attributes.  Derived attributes: The attributes that are

Explain b tree (binary tree), B Tree Unlike a binary-tree, every node o...

B Tree Unlike a binary-tree, every node of a B-tree may have a variable number of keys and children. The keys are stored in non-decreasing order. Every key has an associated ch

Division-remainder hashing, According to this, key value is divided by any ...

According to this, key value is divided by any fitting number, generally a prime number, and the division of remainder is utilized as the address for the record. The choice of s

Calculates partial sum of an integer, Now, consider a function that calcula...

Now, consider a function that calculates partial sum of an integer n. int psum(int n) { int i, partial_sum; partial_sum = 0;                                           /* L

Abstract Data Types, A useful tool which is used for specifying the logical...

A useful tool which is used for specifying the logical properties of a data type is called the abstract data type or ADT. The term "abstract data type" refers to the fundamental ma

Define techniques of dry running of flowcharts, Explain the term- Dry runni...

Explain the term- Dry running of flowcharts  Dry running of flowcharts is essentially a technique to: Determine output for a known set of data to check it carries out th

Algorithm to add an element at the end of linked list, Write an algorithm t...

Write an algorithm to add an element at the end of circular linked list.   Algorithm to Add the Element at the End of Circular Linked List. IINSENDCLL( INFO, LINK, START, A

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd