Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Adjacency list representation, Adjacency list representation An Adjacen...

Adjacency list representation An Adjacency list representation of Graph G = {V, E} contains an array of adjacency lists mentioned by adj of V list. For each of the vertex u?V,

Sparse matrix, How sparse matrix stored in the memory of a computer?

How sparse matrix stored in the memory of a computer?

Circular queue, explain implementation of circular queue insert,delete oper...

explain implementation of circular queue insert,delete operations

frequenty count of function, Ask question find frequency count of function...

Ask question find frequency count of function- {for(i=1;i {for(j=1;j {for(k=1;k } } }

Define an array, Define an array. Array is made up of same data structu...

Define an array. Array is made up of same data structure that exists in any language. Array is set of same data types. Array is the collection of same elements. These same elem

Draw a b-tree., Q. Draw a B-tree of order 3 for the sequence of keys writte...

Q. Draw a B-tree of order 3 for the sequence of keys written below: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10

Recursive and iterative handling of a binary search tree, This section pres...

This section prescribes additional exercise with the recursive and iterative handling of a binary search tree. Adding to the Binary Search Tree Recursively Add implementation

Tree, application of threaded binary treee

application of threaded binary treee

Insertion of an element in a linear array, To delete an element in the list...

To delete an element in the list at the end, we can delete it without any difficult. But, assume if we desire to delete the element at the straining or middle of the list, then, we

Enumerate the types in ruby, Enumerate the Types in Ruby Ruby is a pure...

Enumerate the Types in Ruby Ruby is a pure object-oriented language, meaning that all types in Ruby are classes, and each value in a Ruby program is an instance of a class. Thi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd