Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

B-TREE and AVL tree diffrance, Explain process of B-TREE and what differen...

Explain process of B-TREE and what difference between AVL Tree Using Algorithms

Make adjacency matrix for un-directed graph, Q. Describe the adjacency matr...

Q. Describe the adjacency matrix and make the same for the given undirected graph.    Ans: The representation of Adjacency Matrix: This representation consists of

Write an algorithm outputs number of books using psuedocode, A shop sells b...

A shop sells books, maps and magazines. Every item is identified by a unique 4 - digit code. All books have a code starting with a 1, all maps have a code which starts with a 2 and

Bayesian statistics question, Suppose that there is a Beta(2,2) prior distr...

Suppose that there is a Beta(2,2) prior distribution on the probability theta that a coin will yield a "head" when spun in a specified manner. The coin is independently spun 10 tim

Define queue fifo ?, A queue is a particular type of collection or abstract...

A queue is a particular type of collection or abstract data type in which the entities in the collection are went in order and the principal functions on the collection are the add

Adjacency list representation, Adjacency list representation An Adjacen...

Adjacency list representation An Adjacency list representation of Graph G = {V, E} contains an array of adjacency lists mentioned by adj of V list. For each of the vertex u?V,

Problem logicall, Given a list containing Province, CustomerName and SalesV...

Given a list containing Province, CustomerName and SalesValue (sorted by Province and CustomerName), describe an algorithm you could use that would output each CustomerName and Sal

Programming information system, Describe an algorithm to play the Game of N...

Describe an algorithm to play the Game of Nim using all of the three tools (pseudocode, flowchart, hierarchy chart)

Differentiate between nonpersistent and 1-persistent, Differentiate between...

Differentiate between Nonpersistent and 1-persistent Nonpersistent: If the medium is idle, transmit; if the medium is busy, wait an amount of time drawn from a probability dist

Implementation of dequeue, Dequeue (a double ended queue) is an abstract da...

Dequeue (a double ended queue) is an abstract data type alike to queue, where insertion and deletion of elements are allowed at both of the ends. Like a linear queue & a circular q

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd