Problems on cantilever truss, Mechanical Engineering

Problems on Cantilever Truss:

In the case of cantilever trusses, it is not required to determine the support reactions. The forces in members of cantilever truss are obtained by begning the calculations from free end of cantilever.

Q Determine forces in all the member of cantilever truss shown in the figure given below 

 

1370_Problems on Cantilever Truss.png

Sol.: From ?ACE, we have

tan θ = AE/AC = 4/6 = 0.66                                                                             ...(i)

Also,                                      1027_Problems on Cantilever Truss1.png

cos θ = AC/EC = 6/7.21 = 0.8321     ... (iii)

sin θ = AE/CE = 4/7.21 = 0.5548 

 

543_Problems on Cantilever Truss2.png

Joint C:

Consider free body diagram of joint C as shown in the given figure;

 

1746_Problems on Cantilever Truss3.png

As the three forces are acting, so apply lami's theorem at the joint C.

TBC/sin(90 - θ) = TCD/sin270 = 2000/sin θ

TBC/cos θ = TCD/sin 270 = 2000/sin θ

TBC = 2000/tan θ = 2000/0.66 = 3000.3N         ...(v)

Joint B:

 

2358_Problems on Cantilever Truss4.png

TBC = 3000.3N (Tensile)                                          .......ANS

TCD = - 2000/sin θ = 2000/0.55 = 3604.9N      ...(vi)

TCD = 3604.9N (Compressive)                              .......ANS

Consider free body diagram of joint B as shown in the given figure

As,                           TBC = 3000.3N

Let,                          TAB = Force in the member AB

TDB  = Force in member DB

As the four forces are acting at the joint B, So apply resolution of forces at joint B

RH = TAB  - TBC  = 0, TAB  = TBC = 3000.03 = TAB

TAB = 3000.03                                                            ...(vii)

TAB = 3000.03N (Tensile)                                       .......ANS

RV = - TDB  - 2000 = 0

TDB = -2000N                                                             ...(viii)

TDB = 2000N (compressive)                                   .......ANS

Joint D:

Consider free body diagram of joint D as shown in figure given below

 

1248_Problems on Cantilever Truss5.png

As,                           TDB = - 2000N

TCD = 3604.9N

Let, TA = Force in member AD

TDE  = Force in member DE

As the four forces are acting at the joint D, So apply resolution of forces at

217_Problems on Cantilever Truss6.png

 

By solving equation (ix) and (x),

2402_Problems on Cantilever Truss7.png

 

Member

AB

BC

CD

DE

DB

AD

Force in N

3000.03

3000.03

3604.9

5542.31

2000

1818.18

Nature

C = Compression

T = Tension

 

T

 

T

 

C

 

T

 

C

 

C

Posted Date: 10/29/2012 1:06:51 AM | Location : United States







Related Discussions:- Problems on cantilever truss, Assignment Help, Ask Question on Problems on cantilever truss, Get Answer, Expert's Help, Problems on cantilever truss Discussions

Write discussion on Problems on cantilever truss
Your posts are moderated
Related Questions
What is euler operator Once a polyhedron model is available one might want to edit it by adding or deleting vertices, edges and faces to create a new polyhedron. These operatio

Communication Protocols Applicable in Holonic Manufacturing System Communication amongst agents plays an essential role in the Holonic manufacturing system. Exchange of informa

Binomial distribution: Let X follow a binomial distribution with parameters n = 4 and p = 0.5. Tabulate P ( ¦X - μ¦ ≥ k ) and σ 2 /k 2 for k = 1,2,3,4,5 and verify that Cheby

What do you understand by interference between two mating gears ? if interference between two involutes gears is to be avoided then show that the maximum length of arc of contact w

Write down short notes on : (i) Dynamometer and Brakes. (ii) Transmission Dynamometer and Absorption Dynamometer. (iii) Epicyclic Gear Train Dynamometers.

Branches of mechanics: Mechanics is basically divided in to two parts Static's and Dynamics, Dynamics is further divided in kinematics and kinetics Statics: It deals with

Cell-decomposition In cell-decomposition, an object can be represented as the sum of cells into which it can be decomposed. Each cell-decomposition system defines a set of prim

Kleins construction fr 90 degree and 180 degree angle

Q.   For an electromagnetic system, show that the energy stored in a magnetic field is equal to the area enclosed b/w magnetization curves for open and closed position of the armat

Project Quality Plan Design verification requirements for a project are to be established in the Quality Plan sub-section of the Project Execution Plan. The Lead Mechanical E