Problems on cantilever truss, Mechanical Engineering

Problems on Cantilever Truss:

In the case of cantilever trusses, it is not required to determine the support reactions. The forces in members of cantilever truss are obtained by begning the calculations from free end of cantilever.

Q Determine forces in all the member of cantilever truss shown in the figure given below 

 

1370_Problems on Cantilever Truss.png

Sol.: From ?ACE, we have

tan θ = AE/AC = 4/6 = 0.66                                                                             ...(i)

Also,                                      1027_Problems on Cantilever Truss1.png

cos θ = AC/EC = 6/7.21 = 0.8321     ... (iii)

sin θ = AE/CE = 4/7.21 = 0.5548 

 

543_Problems on Cantilever Truss2.png

Joint C:

Consider free body diagram of joint C as shown in the given figure;

 

1746_Problems on Cantilever Truss3.png

As the three forces are acting, so apply lami's theorem at the joint C.

TBC/sin(90 - θ) = TCD/sin270 = 2000/sin θ

TBC/cos θ = TCD/sin 270 = 2000/sin θ

TBC = 2000/tan θ = 2000/0.66 = 3000.3N         ...(v)

Joint B:

 

2358_Problems on Cantilever Truss4.png

TBC = 3000.3N (Tensile)                                          .......ANS

TCD = - 2000/sin θ = 2000/0.55 = 3604.9N      ...(vi)

TCD = 3604.9N (Compressive)                              .......ANS

Consider free body diagram of joint B as shown in the given figure

As,                           TBC = 3000.3N

Let,                          TAB = Force in the member AB

TDB  = Force in member DB

As the four forces are acting at the joint B, So apply resolution of forces at joint B

RH = TAB  - TBC  = 0, TAB  = TBC = 3000.03 = TAB

TAB = 3000.03                                                            ...(vii)

TAB = 3000.03N (Tensile)                                       .......ANS

RV = - TDB  - 2000 = 0

TDB = -2000N                                                             ...(viii)

TDB = 2000N (compressive)                                   .......ANS

Joint D:

Consider free body diagram of joint D as shown in figure given below

 

1248_Problems on Cantilever Truss5.png

As,                           TDB = - 2000N

TCD = 3604.9N

Let, TA = Force in member AD

TDE  = Force in member DE

As the four forces are acting at the joint D, So apply resolution of forces at

217_Problems on Cantilever Truss6.png

 

By solving equation (ix) and (x),

2402_Problems on Cantilever Truss7.png

 

Member

AB

BC

CD

DE

DB

AD

Force in N

3000.03

3000.03

3604.9

5542.31

2000

1818.18

Nature

C = Compression

T = Tension

 

T

 

T

 

C

 

T

 

C

 

C

Posted Date: 10/29/2012 1:06:51 AM | Location : United States







Related Discussions:- Problems on cantilever truss, Assignment Help, Ask Question on Problems on cantilever truss, Get Answer, Expert's Help, Problems on cantilever truss Discussions

Write discussion on Problems on cantilever truss
Your posts are moderated
Related Questions

Carburettor Tuning :  It is very important that the carburettor is tuned properly to attain the best fuel efficiency and performance of the motorcycle. Since air screw is factory

hello,my name is mustapha from iran I want design piston engine (structure design cranckshaft ,rod,bearing,...)

Disk requests come in to the disk driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in that order. A seek takes 6 mes per cylinder moved. How much seek time is needed for (a) F

Find the maximum shear stress at free end: A stepped shaft ABCD, with A is fixed end and D is free end. AB = 1 m, BC = 2 m, CD = 1 m. AB is a hollow shaft of 100 mm outer diam

What are relevant design considerations? The relevant design considerations may be summarized as follows: a. Main reinforcement (uniformly distributed) is placed in a longit

Throttle Free Play Adjustmen: A smooth operation of the throttle ensures proper acceleration of the vehicle according to the requirement of the rider. If the throttle cable is kin

If Equivalent force F and F acting on rigid body are not in line Sol.: If equivalent force of same magnitude 'F' acting on the rigid body are not in line, then there is no c

Q. Insulation on Flanges and Valves? Valves, flanges, and unions shall not normally be insulated unless specified by OWNER. All other fittings are to be insulated. Fittings

Borides Borides of Mo, W, Cr, Ti and Zr find extensive industrial application. They exhibit extremely high hardness, melting point from 1800 to 3000 o C and good chemical resi