Problems on cantilever truss, Mechanical Engineering

Problems on Cantilever Truss:

In the case of cantilever trusses, it is not required to determine the support reactions. The forces in members of cantilever truss are obtained by begning the calculations from free end of cantilever.

Q Determine forces in all the member of cantilever truss shown in the figure given below 

 

1370_Problems on Cantilever Truss.png

Sol.: From ?ACE, we have

tan θ = AE/AC = 4/6 = 0.66                                                                             ...(i)

Also,                                      1027_Problems on Cantilever Truss1.png

cos θ = AC/EC = 6/7.21 = 0.8321     ... (iii)

sin θ = AE/CE = 4/7.21 = 0.5548 

 

543_Problems on Cantilever Truss2.png

Joint C:

Consider free body diagram of joint C as shown in the given figure;

 

1746_Problems on Cantilever Truss3.png

As the three forces are acting, so apply lami's theorem at the joint C.

TBC/sin(90 - θ) = TCD/sin270 = 2000/sin θ

TBC/cos θ = TCD/sin 270 = 2000/sin θ

TBC = 2000/tan θ = 2000/0.66 = 3000.3N         ...(v)

Joint B:

 

2358_Problems on Cantilever Truss4.png

TBC = 3000.3N (Tensile)                                          .......ANS

TCD = - 2000/sin θ = 2000/0.55 = 3604.9N      ...(vi)

TCD = 3604.9N (Compressive)                              .......ANS

Consider free body diagram of joint B as shown in the given figure

As,                           TBC = 3000.3N

Let,                          TAB = Force in the member AB

TDB  = Force in member DB

As the four forces are acting at the joint B, So apply resolution of forces at joint B

RH = TAB  - TBC  = 0, TAB  = TBC = 3000.03 = TAB

TAB = 3000.03                                                            ...(vii)

TAB = 3000.03N (Tensile)                                       .......ANS

RV = - TDB  - 2000 = 0

TDB = -2000N                                                             ...(viii)

TDB = 2000N (compressive)                                   .......ANS

Joint D:

Consider free body diagram of joint D as shown in figure given below

 

1248_Problems on Cantilever Truss5.png

As,                           TDB = - 2000N

TCD = 3604.9N

Let, TA = Force in member AD

TDE  = Force in member DE

As the four forces are acting at the joint D, So apply resolution of forces at

217_Problems on Cantilever Truss6.png

 

By solving equation (ix) and (x),

2402_Problems on Cantilever Truss7.png

 

Member

AB

BC

CD

DE

DB

AD

Force in N

3000.03

3000.03

3604.9

5542.31

2000

1818.18

Nature

C = Compression

T = Tension

 

T

 

T

 

C

 

T

 

C

 

C

Posted Date: 10/29/2012 1:06:51 AM | Location : United States







Related Discussions:- Problems on cantilever truss, Assignment Help, Ask Question on Problems on cantilever truss, Get Answer, Expert's Help, Problems on cantilever truss Discussions

Write discussion on Problems on cantilever truss
Your posts are moderated
Related Questions
Carburettor Tuning :  It is very important that the carburettor is tuned properly to attain the best fuel efficiency and performance of the motorcycle. Since air screw is factory

What are the objectives of bearing capacity? The objectives of bearing capacity: a. identify the possible modes of failure that a shallow foundation can undergo, b. under

Relationships among VM, Virtual Prototyping, the Virtual Enterprise Virtual Manufacturing (VM) VM is a synthetic, integrated manufacturing environment exercised to improve

First law of thermodynamics applied to flow process


MIS MIS:- Management Information System Produces reports on user demand MIS is use for the Decision making reports It Collect data form of all department then produce

Properties of Aluminium Alloys: Among the different properties of aluminium alloys given are notable as: (a) Low density as 2.7 gm/cc (b) Elevated electrical and therma

Ductile mid brittle material: A material that can undergo large permanent deformation in tension, that is, it can be drawn into wires is called as ductile. A material which

Find out the velocity of the mass: A mass of weight 29.4 Newton is subjected into a time dependent force, F(t)  = (3t 3  + 5) along x direction. Find out the velocity of the

A hole of 25 mm diameter and 62.5 mm depth is to be drilled. The suggested feed is 1.25 mm/rev.and the cutting speed is 60 m/min. Assume the clearance height is 5 mm. Determine: f