Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Present your own fully documented and tested programming example illustrating the problem of unbalanced loads. Describe the use of OpenMP's scheduler as a means of mitigating this problem.
The below example shows a number of tasks that all update a global counter. Since threads share the same memory space, they indeed see and update the same memory location. The code returns a false result because updating the variable is much quicker than creating the thread as on a multicore processor the chance of errors will greatly increase. If we artificially increase the time for the update, we will no longer get the right result. All threads read out the value of sum, wait a while (presumably calculating something) and then update.
#include
#include "pthread.h"
int sum=0;
void adder() {
int sum = 0;
int t = sum; sleep(1); sum = t+1;
return;
}
#define NTHREADS 50
int main() {
int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
{
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
printf("Sum computed: %d\n",sum);
return 0;
The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way.
#pragma omp for
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
File structure Certain files must conform to a needed structure that is understood by the operating system. The operating system may consist that an executable file has a parti
List five services provided by an operating system. Explain how each provides convenience to the users. Explain also in which cases it would be impossible for user-level programs t
Write a short note about process. Unceremoniously, a process is a program in implementation. A process is too much than the program code, which is occasionally known as the tex
? FREE ASSOCIATION ASSIGNMENTS of multiprograming
Problem 1. What is kernel? What are the main components of a kernel? Defining Kernel Explaining Main components of Kernel 2. What is mutual exclusion? What are i
What is an I/O subsystem? The control of devices connected to the computer is a main issue while designing operating systems. Because I/O deices differ widely in their function
what is network operating? explain about it design issues?
Define where a Program generation activity aims Program generation activity aims at Automatic generation of program
what is an operating system?
Lexical substitution during macro expansion Lexical substitution is employed to produce an assembly statement from a model statement. A model statement contains 3 types of stri
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd