Problem, Operation Research

A paper mill produces two grades of paper viz., X and Y. Because of raw
material restrictions, it cannot produce more than 400 tons of grade X paper
and 300 tons of grade Y paper in a week. There are 160 production hours in a
week. It requires 0.20 and 0.40 hours to produce a ton of grade X and Y papers.
The mill earns a profit of Rs. 200 and Rs. 500 per ton of grade X and Y paper
respectively. Formulate this as a Linear Programming Problem.
Posted Date: 2/13/2013 11:31:41 AM | Location : USA

Related Discussions:- Problem, Assignment Help, Ask Question on Problem, Get Answer, Expert's Help, Problem Discussions

Write discussion on Problem
Your posts are moderated
Related Questions

Simple Graph The values of the two variables are plotted on a graph paper. We get two curves one for x variables and another for y  variables. These  two curves reveal the dir

Q2.Six Operators are to be assigned to five jobs with the cost of assignment in Rs. given in the matrix below. Determine the optimal assignment. Which operator will have no assignm

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

3. Explain ‘Vogel Approximation Model (VAM)’.? answer please

The NW  corner  rule  described  earlier considers only  the availability  and supply  requirements  in making  assignments. It takes  no account  of the shipping  costs  given  in

undertake the proposed research investigation in accordance with the agreed specification and procedures

Test Statistic The next  step is compute an appropriate  test statistic which  is based on an appropriate probability distribution. It  is used to test whether the null  hypo

Festinger and Katz have described followings six steps in the conduct to a field study. a. Preliminary Planning :Deciding scope and objectives of study and the time table

Methods  of calculation of standard deviation a. Calculation of Standard  Deviation  - Individual Series: There  are two methods of calculating standard  deviation in an ind