Probability rules, Mathematics

Probability Rules

A probability is a number assigned to the occurrence of an event in a sample space. Probability measures must satisfy three rules. If A is an event with probability denoted by P(A), then the following rules hold:

Rule 1

The probability of the entire sample space S is 1, i.e. P(S) = 1.

29_probability rules.png

Area of sample space rectangle = 1. An event A is represented within the rectangle. Minimum possible area of A is 0 and maximum possible area is 1.

Rule 2

The probability of the event A must be greater than or equal to 0 and less than or equal to 1 or 100%, i.e. 0 < P(A) < 1. This rule says that probabilities cannot be negative and as the probability of the sample space is 1, the probability of an event contained in the sample space should be less than or equal to 1.

Rule 3

If A and B are mutually exclusive events, then the probability of (A or B) is equal to the sum of the probabilities of A and B.

P(A or B) =  P (A) + P (B) because P (A and B) = 0 as A and B are mutually exclusive.

Mutually exclusive events are those which do not overlap when represented in Venn diagrams.

1844_probability rules1.png

A & B are mutually exclusive events

C and D are not mutually exclusive events

Two events A and B are mutually exclusive if the occurrence of one implies the non-occurrence of the other. Hence obtaining a head on tossing a coin and obtaining a tail are mutually exclusive events.

Posted Date: 9/14/2012 4:25:18 AM | Location : United States







Related Discussions:- Probability rules, Assignment Help, Ask Question on Probability rules, Get Answer, Expert's Help, Probability rules Discussions

Write discussion on Probability rules
Your posts are moderated
Related Questions
find the equation to the sphere through the circle xsqaure+ysquare+zsquare+=9 , 2x+3y+4z=5

Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri

1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles

Allan has been hired to mow the school soccer field that is 180 ft wide through 330 ft long. If his mower mows strips which are 2 feet huge, how many times must he mow across the w

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

how are polynomials be factored/?

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f


Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Question: Find Fourier series for the periodic function of period 2 π,defined by      f(x) = x 4 ,  - π ≤ x ≤ π