Polynomials - represented by using arrays, Data Structure & Algorithms

 

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/

#include

void main()

{

int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j;

printf("Enter the number of terms in first polynomial. They must be less than 6:\n");

scanf("%d",&term1);

printf("Enter the number of terms in the second polynomial. They must be less than 6:\n");

scanf("%d",&term2);

printf("Enter the exponent and coefficient of every term of the first polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly1[i][0],&poly1[i][1]);

}

printf("Enter the exponent and coefficient of every term of the second polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly2[i][0],&poly2[i][1]);

}

printf("The resulting polynomial because of the addition of the input two polynomials:\n");

for(i=0;i

{

match=0;

for(j=0;j

{ if (match==0)

if(poly1[i][1]==poly2[j][1])

{ printf("%d   %d\n",(poly1[i][0]+poly2[j][0]), poly1[i][1]);

match=1;

}

}

}

for(i=0;i

{

 proceed=1;

for(j=0;j

{  if(proceed==1) if(poly1[i][1]!=poly2[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d\n",poly1[i][0],poly1[i][1]);

}

for(i=0;i

{  proceed=1;

for(j=0;j

{  if(proceed==1) if(poly2[i][1]!=poly1[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d",poly2[i][0],poly2[i][1]);

}

}

Output:

Enter the number of terms in first polynomial. They must be less than 6: 5. Enter the number of terms in the second polynomial .They must be less than 6: 4. Enter the coefficient & exponent of each of term of the first polynomial:

1 2

2 4

3 6

1 8

5 7

Enter the coefficient & exponent of every term of the second polynomial:

5 2

6 9

3 6

5 7

The resultant polynomial because of the addition of the input two polynomials:

6 2

6 6

10 7

2 4

1 8

6 9

The program prompted initially for number of terms of the two polynomials. Then, this prompted for the entry of terms of the 2 polynomials one after another. At first, this adds the coefficients of the corresponding terms of both the polynomials whose exponents are the similar. Then, this prints the terms of the primary polynomial who does not contain corresponding terms in the second polynomial along with the same exponent. Lastly, it prints the terms of the second polynomial that does not contain corresponding terms in the first polynomial.

Posted Date: 4/4/2013 6:44:32 AM | Location : United States







Related Discussions:- Polynomials - represented by using arrays, Assignment Help, Ask Question on Polynomials - represented by using arrays, Get Answer, Expert's Help, Polynomials - represented by using arrays Discussions

Write discussion on Polynomials - represented by using arrays
Your posts are moderated
Related Questions
What are the different ways of representing a graph? The different ways of representing a graph is: Adjacency list representation: This representation of graph having of an

Describe different methods of developing algorithms with examples.

Question a) Describe how the endogenous model is an improvement to the neo-classical model in explaining the long-run effect of investment on economic growth of a country.

What is complexity of an algorithm? What is the basic relation between the time and space complexities of an algorithm? Justify your answer by giving an example.

implementation of fast fourier transforms for non power of 2

Thus far, we have been considering sorting depend on single keys. However, in real life applications, we may desire to sort the data on several keys. The simplest instance is that

In the previous unit, we have discussed arrays. Arrays are data structures of fixed size. Insertion and deletion involves reshuffling of array elements. Thus, array manipulation

Define a B-Tree Justas AVL trees are balanced binary search trees, B-trees are balanced M-way search trees. A B-Tree of order M is either the empty tree or it is an M-way searc

Binary search technique:-  This technique is applied to an ordered list where elements are arranged either in ascending order or descending order. The array is separated into t

What are the conditions under which sequential search of a list is preferred over binary search?