Polynomials - represented by using arrays, Data Structure & Algorithms

 

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/

#include

void main()

{

int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j;

printf("Enter the number of terms in first polynomial. They must be less than 6:\n");

scanf("%d",&term1);

printf("Enter the number of terms in the second polynomial. They must be less than 6:\n");

scanf("%d",&term2);

printf("Enter the exponent and coefficient of every term of the first polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly1[i][0],&poly1[i][1]);

}

printf("Enter the exponent and coefficient of every term of the second polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly2[i][0],&poly2[i][1]);

}

printf("The resulting polynomial because of the addition of the input two polynomials:\n");

for(i=0;i

{

match=0;

for(j=0;j

{ if (match==0)

if(poly1[i][1]==poly2[j][1])

{ printf("%d   %d\n",(poly1[i][0]+poly2[j][0]), poly1[i][1]);

match=1;

}

}

}

for(i=0;i

{

 proceed=1;

for(j=0;j

{  if(proceed==1) if(poly1[i][1]!=poly2[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d\n",poly1[i][0],poly1[i][1]);

}

for(i=0;i

{  proceed=1;

for(j=0;j

{  if(proceed==1) if(poly2[i][1]!=poly1[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d",poly2[i][0],poly2[i][1]);

}

}

Output:

Enter the number of terms in first polynomial. They must be less than 6: 5. Enter the number of terms in the second polynomial .They must be less than 6: 4. Enter the coefficient & exponent of each of term of the first polynomial:

1 2

2 4

3 6

1 8

5 7

Enter the coefficient & exponent of every term of the second polynomial:

5 2

6 9

3 6

5 7

The resultant polynomial because of the addition of the input two polynomials:

6 2

6 6

10 7

2 4

1 8

6 9

The program prompted initially for number of terms of the two polynomials. Then, this prompted for the entry of terms of the 2 polynomials one after another. At first, this adds the coefficients of the corresponding terms of both the polynomials whose exponents are the similar. Then, this prints the terms of the primary polynomial who does not contain corresponding terms in the second polynomial along with the same exponent. Lastly, it prints the terms of the second polynomial that does not contain corresponding terms in the first polynomial.

Posted Date: 4/4/2013 6:44:32 AM | Location : United States







Related Discussions:- Polynomials - represented by using arrays, Assignment Help, Ask Question on Polynomials - represented by using arrays, Get Answer, Expert's Help, Polynomials - represented by using arrays Discussions

Write discussion on Polynomials - represented by using arrays
Your posts are moderated
Related Questions
How to creat ATM project by using double linked list?

The advantage of list over Arrays is flexibility. Over flood is not a problem until the computer memory is bushed. When the individual record are quite large, it may be difficult t

Explain th term input and output-  Pseudocode Input and output indicated by the use of terms input number, print total, output total, print "result is" x and so on.

using a program flowchart design a program to illustrate pop and push operation

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

a. Explain the sum of subset problem. Apply backtracking to solve the following instance of sum of subset problem: w= (3, 4, 5, 6} and d = 13. Briefly define the method using a sta

If a Dequeue is implemented via arrays, then this will suffer with the similar problems which a linear queue had suffered. Program 8 gives the array implementation of Dequeue.

Complexity is the rate at which the needed storage or consumed time rise as a function of the problem size. The absolute growth based on the machine utilized to execute the program

Write the algorithm for compound interest

how we can convert a graph into tree