Polynomials - represented by using arrays, Data Structure & Algorithms

 

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/

#include

void main()

{

int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j;

printf("Enter the number of terms in first polynomial. They must be less than 6:\n");

scanf("%d",&term1);

printf("Enter the number of terms in the second polynomial. They must be less than 6:\n");

scanf("%d",&term2);

printf("Enter the exponent and coefficient of every term of the first polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly1[i][0],&poly1[i][1]);

}

printf("Enter the exponent and coefficient of every term of the second polynomial:\n");

for(i=0;i

{scanf("%d %d",&poly2[i][0],&poly2[i][1]);

}

printf("The resulting polynomial because of the addition of the input two polynomials:\n");

for(i=0;i

{

match=0;

for(j=0;j

{ if (match==0)

if(poly1[i][1]==poly2[j][1])

{ printf("%d   %d\n",(poly1[i][0]+poly2[j][0]), poly1[i][1]);

match=1;

}

}

}

for(i=0;i

{

 proceed=1;

for(j=0;j

{  if(proceed==1) if(poly1[i][1]!=poly2[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d\n",poly1[i][0],poly1[i][1]);

}

for(i=0;i

{  proceed=1;

for(j=0;j

{  if(proceed==1) if(poly2[i][1]!=poly1[j][1]) proceed=1;

else

proceed=0;

}

if (proceed==1)

printf("%d %d",poly2[i][0],poly2[i][1]);

}

}

Output:

Enter the number of terms in first polynomial. They must be less than 6: 5. Enter the number of terms in the second polynomial .They must be less than 6: 4. Enter the coefficient & exponent of each of term of the first polynomial:

1 2

2 4

3 6

1 8

5 7

Enter the coefficient & exponent of every term of the second polynomial:

5 2

6 9

3 6

5 7

The resultant polynomial because of the addition of the input two polynomials:

6 2

6 6

10 7

2 4

1 8

6 9

The program prompted initially for number of terms of the two polynomials. Then, this prompted for the entry of terms of the 2 polynomials one after another. At first, this adds the coefficients of the corresponding terms of both the polynomials whose exponents are the similar. Then, this prints the terms of the primary polynomial who does not contain corresponding terms in the second polynomial along with the same exponent. Lastly, it prints the terms of the second polynomial that does not contain corresponding terms in the first polynomial.

Posted Date: 4/4/2013 6:44:32 AM | Location : United States







Related Discussions:- Polynomials - represented by using arrays, Assignment Help, Ask Question on Polynomials - represented by using arrays, Get Answer, Expert's Help, Polynomials - represented by using arrays Discussions

Write discussion on Polynomials - represented by using arrays
Your posts are moderated
Related Questions
Depth-first traversal A depth-first traversal of a tree visit a node and then recursively visits the subtrees of that node. Likewise, depth-first traversal of a graph visits

State the ways to construct container taxonomy There are several ways that we could construct our container taxonomy from here; one way that works well is to make a fundamental

Following are some of the drawback of sequential file organisation: Updates are not simply accommodated. By definition, random access is impossible. All records should be

Explain in brief about the Container An entity which holds finitely many other entities. Just as containers such as boxes, baskets, bags, pails, cans, drawers, and so for

Ask question #explain it beriflyMinimum 100 words accepted#

Define neotaxonomy. Discuss how electron microscopy can help in solving a zoological problem faced by taxonomist.


What is an algorithm?  What are the characteristics of a good algorithm? An algorithm is "a step-by-step process for accomplishing some task'' An algorithm can be given in many

Write the algorithm for compound interest

Construct a B+ tree for the following keys, starting with an empty tree.  Each node in the tree can hold a maximum of 2 entries (i.e., order d = 1). Start with an empty root nod